
About this course

• The local model
• The shuffle model
• Streaming/online settings
• Differential privacy as a tool

Differential privacy without a central database
Boston Differential Privacy Summer School, 6-10 June 2022

Uri Stemmer

Google, Apple, and Microsoft have been using locally-differentially-private
algorithms in the Chrome browser, in iOS-10, and in Windows 10

Local Differential Privacy (LDP): Motivation

How can organizations collect high-quality aggregate information from their user
bases, while guaranteeing that no individual-specific information is collected?

How to learn new words?

• Identify common “typos” and add
them to dictionary!

• Privacy concerns?

Great selfie!

Thanks!

What is a selfie?

Server

Us
er

s

What is Local Differential Privacy?

20

50

90

𝑹𝟏

𝑹𝟐

𝑹𝟑

3

11

4

Post-process Dataset
Statistics

[Dwork, McSherry, Nissim, Smith 06], [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08], [Evfimievski, Gehrke, Srikant 03]

Server
Us

er
s

What is Local Differential Privacy?

Definition – Local Differential Privacy (simplified)

• 𝝐-LDP algorithm accesses every data entry only once, via an 𝝐-local randomizer

• 𝝐-local randomizer is an algorithm 𝑹:𝑿 → 𝒀 s.t. ∀𝒙, 𝒙′ ∈ 𝑿, ∀𝒚 ∈ 𝒀

𝐏𝐫 𝑹 𝒙 = 𝒚 ≤ 𝒆𝝐 ⋅ 𝐏𝐫 𝑹 𝒙′ = 𝒚

20

50

90

𝑹𝟏

𝑹𝟐

𝑹𝟑

3

11

4

Post-process Dataset
Statistics

Server
Us

er
s

[Dwork, McSherry, Nissim, Smith 06], [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08], [Evfimievski, Gehrke, Srikant 03]

What is Local Differential Privacy?

Definition – Local Differential Privacy (simplified)

• 𝝐-LDP algorithm accesses every data entry only once, via an 𝝐-local randomizer

• 𝝐-local randomizer is an algorithm 𝑹:𝑿 → 𝒀 s.t. ∀𝒙, 𝒙′ ∈ 𝑿, ∀𝒚 ∈ 𝒀

𝐏𝐫 𝑹 𝒙 = 𝒚 ≤ 𝒆𝝐 ⋅ 𝐏𝐫 𝑹 𝒙′ = 𝒚

20

50

90

𝑹𝟏

𝑹𝟐

𝑹𝟑

3

11

4

Post-process Dataset
Statistics

20 𝑹𝟏

307 𝑹𝟏 Se
rv

er

𝑹𝟏 𝟑𝟎𝟕

𝑹𝟏 𝟐𝟎

≈

Server
Us

er
s

[Dwork, McSherry, Nissim, Smith 06], [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08], [Evfimievski, Gehrke, Srikant 03]

Definition – Local Differential Privacy (simplified)

• 𝝐-LDP algorithm accesses every data entry only once, via an 𝝐-local randomizer

• 𝝐-local randomizer is an algorithm 𝑹:𝑿 → 𝒀 s.t. ∀𝒙, 𝒙′ ∈ 𝑿, ∀𝒚 ∈ 𝒀

𝐏𝐫 𝑹 𝒙 = 𝒚 ≤ 𝒆𝝐 ⋅ 𝐏𝐫 𝑹 𝒙′ = 𝒚

20

50

90

𝑹𝟏

𝑹𝟐

𝑹𝟑

3

11

4

Post-process Dataset
Statistics

20 𝑹𝟏

307 𝑹𝟏 A
p
p

le

𝑹𝟏 𝟑𝟎𝟕

𝑹𝟏 𝟐𝟎

≈

Server
Us

er
s

What is Local Differential Privacy?

Dataset
Statistics

20

50

90

20

50

90

DP

Compare to the
centralized model

In the standard (centralized) model of DP, we trust the analyzer, and provide privacy against
any observer to the outcome of the computation. But the analyzer learns everything

[Dwork, McSherry, Nissim, Smith 06], [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08], [Evfimievski, Gehrke, Srikant 03]

Why use LDP?

• Valuable information about users while providing strong privacy and trust guarantees

• Privacy preserved even if the organization is subpoenaed

• Reduces organization liability for securing the data

• As every user randomizes her data, accuracy is reduced

• Number of users might be very large (in the millions)

• Optimizing runtime and memory usage becomes crucial

Challenges

The Local Model of Differential Privacy
Today’s Outline

1. What is the model?

2. Computing histograms

3. Computing averages

4. Clustering

5. LDP vs. statistical queries

6. Impossibility result for histograms

7. Interactive LDP protocols

Problem Statement: Histograms

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

* The error of the protocol is the maximal estimation error

Problem Statement: Histograms

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

* The error of the protocol is the maximal estimation error

For example, 𝑿 could be the set of all (reasonably length) URL
domains, and for every user 𝒊 we have 𝒙𝒊 = homepage address

The goal here would be to estimate the
popularity of different homepage addresses

* The error of the protocol is the maximal estimation error

Problem Statement: Histograms

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

𝑿

m
u

lt
ip

lic
it

y
in

 𝑺

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

In figure: Want estimations ෠𝒇𝑺 s.t. max𝑥∈𝑋 ෠𝒇𝑺 𝒙 − 𝒇𝑺 𝒙 is small

In figure: Want estimations ෠𝒇𝑺 s.t. max𝑥∈𝑋 ෠𝒇𝑺 𝒙 − 𝒇𝑺 𝒙 is small

* The error of the protocol is the maximal estimation error

Problem Statement: Histograms

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

𝑿

m
u

lt
ip

lic
it

y
in

 𝑺

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

In figure: Want estimations ෠𝒇𝑺 s.t. max𝑥∈𝑋 ෠𝒇𝑺 𝒙 − 𝒇𝑺 𝒙 is small

* The error of the protocol is the maximal estimation error

Problem Statement: Histograms

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

𝑿
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

In figure: Want estimations ෠𝒇𝑺 s.t. max𝑥∈𝑋 ෠𝒇𝑺 𝒙 − 𝒇𝑺 𝒙 is small

* The error of the protocol is the maximal estimation error

Problem Statement: Histograms

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

𝑿
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 𝑹𝟏

307 𝑹𝟏 Se
rv

er

?𝑹𝟏 𝟑𝟎𝟕

𝑹𝟏 𝟐𝟎

≈

R
e

ca
p

LD
P

The server learns that many users hold '17', without knowing which are these users!

• Arguably the most well-studied problem under LDP, Important
subroutine for solving many other problems
[MS 06], [HKR 12], [EP 14], [BS 15], [QYYKXR 16], [TVVKFSD 17]…

• Google and Apple have been using using LDP algorithms for this
problem in the Chrome browser and in iOS-10:
 QuickType suggestions, Emoji suggestions, Lookup Hints, Energy Draining

Domains, Autoplay Intent Detection, Crashing Domains, Health Type Usage

Why solve under LDP?

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

𝑿
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Why solve under LDP?

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

𝑿
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Observe: If 𝑿 is large, then efficient algorithms cannot output estimations for every 𝒙 ∈ 𝑿 directly

Why solve under LDP?

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

𝑿
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Observe: If 𝑿 is large, then efficient algorithms cannot output estimations for every 𝒙 ∈ 𝑿 directly

Goal 1 – Frequency Oracle:
Frequency oracle is an algorithm that, after communicating with the users, outputs a data structure
capable of approximating 𝒇𝑺 𝒙 for every 𝒙 ∈ 𝑿

Goal 2 – Heavy Hitters:
Identify a (short) subset 𝐋 ⊆ 𝑿 of “heavy-hitters” with estimates for their frequencies (the
frequency of every 𝒙 ∉ 𝑳 is estimated as 0)

Why solve under LDP?

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

𝑿
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Observe: If 𝑿 is large, then efficient algorithms cannot output estimations for every 𝒙 ∈ 𝑿 directly

Goal 1 – Frequency Oracle:
Frequency oracle is an algorithm that, after communicating with the users, outputs a data structure
capable of approximating 𝒇𝑺 𝒙 for every 𝒙 ∈ 𝑿

Goal 2 – Heavy Hitters:
Identify a (short) subset 𝐋 ⊆ 𝑿 of “heavy-hitters” with estimates for their frequencies (the
frequency of every 𝒙 ∉ 𝑳 is estimated as 0)

• Heavy-hitters is a particular kind of a frequency oracle, so it might be harder to obtain
• Ignoring runtime, the two goals are equivalent

• What’s next? (1) Show a reduction from Goal 2 to Goal 1
(2) Show how to achieve Goal 1

Thm: If there is an 𝜺-LDP frequency oracle with error 𝝉 then there is an 𝑶 𝜺 -
LDP algorithm for heavy-hitters with error 𝑶 𝝉 with almost the same runtime,
space, and communication complexities

Easier Thm: If there is an efficient 𝜺-LDP frequency oracle with error 𝝉 then
there is an efficient 𝜺⋅𝐥𝐨𝐠 𝑿 -LDP algorithm for heavy-hitters with error 𝟐𝝉

Part 1: Use Oracle to identify Heavy-Hitters

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

1) Let 𝕆 be an 𝜺-LDP frequency oracle with error 𝝉
2) There are 𝒏 users where every user 𝒊 ∈ 𝒏 holds an input 𝒙𝒊 ∈ 𝑿. Denote 𝑺 = 𝒙𝟏, … , 𝒙𝒏

Proof of easier theorem

1) Let 𝕆 be an 𝜺-LDP frequency oracle with error 𝝉
2) There are 𝒏 users where every user 𝒊 ∈ 𝒏 holds an input 𝒙𝒊 ∈ 𝑿. Denote 𝑺 = 𝒙𝟏, … , 𝒙𝒏
3) Let 𝒉:𝑿 → 𝑻 be a publicly known hash function

Intuition: if 𝒉 isolates heavy-hitters then suffices to query 𝕆 on hash range. But how?

Proof of easier theorem

Simplifying assumption: No collisions in 𝒉 for elements in 𝑺

1) Let 𝕆 be an 𝜺-LDP frequency oracle with error 𝝉
2) There are 𝒏 users where every user 𝒊 ∈ 𝒏 holds an input 𝒙𝒊 ∈ 𝑿. Denote 𝑺 = 𝒙𝟏, … , 𝒙𝒏
3) Let 𝒉:𝑿 → 𝑻 be a publicly known hash function

Intuition: if 𝒉 isolates heavy-hitters then suffices to query 𝕆 on hash range. But how?

Fix a “heavy-hitter” 𝒙∗ satisfying 𝒇𝑺 𝒙∗ > 𝟐𝝉, and denote 𝒕∗ = 𝒉 𝒙∗ % We want to identify 𝒙∗

Proof of easier theorem

Simplifying assumption: No collisions in 𝒉 for elements in 𝑺

1) Let 𝕆 be an 𝜺-LDP frequency oracle with error 𝝉
2) There are 𝒏 users where every user 𝒊 ∈ 𝒏 holds an input 𝒙𝒊 ∈ 𝑿. Denote 𝑺 = 𝒙𝟏, … , 𝒙𝒏
3) Let 𝒉:𝑿 → 𝑻 be a publicly known hash function

Intuition: if 𝒉 isolates heavy-hitters then suffices to query 𝕆 on hash range. But how?

Fix a “heavy-hitter” 𝒙∗ satisfying 𝒇𝑺 𝒙∗ > 𝟐𝝉, and denote 𝒕∗ = 𝒉 𝒙∗ % We want to identify 𝒙∗

For ℓ ∈ 𝐥𝐨𝐠 𝑿 define 𝑺ℓ = 𝒉 𝒙𝒊 , 𝒙𝒊 ℓ 𝒊∈ 𝒏 , where 𝒙𝒊 ℓ = bit ℓ of 𝒙𝒊 % Users compute rows locally

Proof of easier theorem

Simplifying assumption: No collisions in 𝒉 for elements in 𝑺

1) Let 𝕆 be an 𝜺-LDP frequency oracle with error 𝝉
2) There are 𝒏 users where every user 𝒊 ∈ 𝒏 holds an input 𝒙𝒊 ∈ 𝑿. Denote 𝑺 = 𝒙𝟏, … , 𝒙𝒏
3) Let 𝒉:𝑿 → 𝑻 be a publicly known hash function

Intuition: if 𝒉 isolates heavy-hitters then suffices to query 𝕆 on hash range. But how?

Fix a “heavy-hitter” 𝒙∗ satisfying 𝒇𝑺 𝒙∗ > 𝟐𝝉, and denote 𝒕∗ = 𝒉 𝒙∗ % We want to identify 𝒙∗

For ℓ ∈ 𝐥𝐨𝐠 𝑿 define 𝑺ℓ = 𝒉 𝒙𝒊 , 𝒙𝒊 ℓ 𝒊∈ 𝒏 , where 𝒙𝒊 ℓ = bit ℓ of 𝒙𝒊 % Users compute rows locally

• 𝒙∗ is “heavy”, hence 𝒕∗, 𝒙∗ ℓ appears > 𝟐𝝉 in 𝑺ℓ for every ℓ
• No collisions, hence 𝒕∗, 𝟏 − 𝒙∗ ℓ appears 0 times in 𝑺ℓ
• ⟹ Can identify every bit ℓ of 𝒙∗ by querying 𝕆 𝑺ℓ on 𝒕∗, 𝟎 and 𝒕∗, 𝟏

Proof of easier theorem

Simplifying assumption: No collisions in 𝒉 for elements in 𝑺

1) Let 𝕆 be an 𝜺-LDP frequency oracle with error 𝝉
2) There are 𝒏 users where every user 𝒊 ∈ 𝒏 holds an input 𝒙𝒊 ∈ 𝑿. Denote 𝑺 = 𝒙𝟏, … , 𝒙𝒏
3) Let 𝒉:𝑿 → 𝑻 be a publicly known hash function

Intuition: if 𝒉 isolates heavy-hitters then suffices to query 𝕆 on hash range. But how?

Fix a “heavy-hitter” 𝒙∗ satisfying 𝒇𝑺 𝒙∗ > 𝟐𝝉, and denote 𝒕∗ = 𝒉 𝒙∗ % We want to identify 𝒙∗

For ℓ ∈ 𝐥𝐨𝐠 𝑿 define 𝑺ℓ = 𝒉 𝒙𝒊 , 𝒙𝒊 ℓ 𝒊∈ 𝒏 , where 𝒙𝒊 ℓ = bit ℓ of 𝒙𝒊 % Users compute rows locally

• 𝒙∗ is “heavy”, hence 𝒕∗, 𝒙∗ ℓ appears > 𝟐𝝉 in 𝑺ℓ for every ℓ
• No collisions, hence 𝒕∗, 𝟏 − 𝒙∗ ℓ appears 0 times in 𝑺ℓ
• ⟹ Can identify every bit ℓ of 𝒙∗ by querying 𝕆 𝑺ℓ on 𝒕∗, 𝟎 and 𝒕∗, 𝟏

The Protocol: For every 𝒕 ∈ 𝑻 construct ෝ𝒙 𝒕 as follows:

∀ℓ ∈ 𝐥𝐨𝐠 𝑿 query 𝕆 𝑺ℓ on 𝒕, 𝟎 and 𝒕, 𝟏 and set ෝ𝒙 𝒕 ℓ ← 𝐚𝐫𝐠𝐦𝐚𝐱

By purple, ෝ𝒙 𝒕∗ = 𝒙∗ is identified

Proof of easier theorem

Simplifying assumption: No collisions in 𝒉 for elements in 𝑺

1) Let 𝕆 be an 𝜺-LDP frequency oracle with error 𝝉
2) There are 𝒏 users where every user 𝒊 ∈ 𝒏 holds an input 𝒙𝒊 ∈ 𝑿. Denote 𝑺 = 𝒙𝟏, … , 𝒙𝒏
3) Let 𝒉:𝑿 → 𝑻 be a publicly known hash function

Intuition: if 𝒉 isolates heavy-hitters then suffices to query 𝕆 on hash range. But how?

Fix a “heavy-hitter” 𝒙∗ satisfying 𝒇𝑺 𝒙∗ > 𝟐𝝉, and denote 𝒕∗ = 𝒉 𝒙∗ % We want to identify 𝒙∗

For ℓ ∈ 𝐥𝐨𝐠 𝑿 define 𝑺ℓ = 𝒉 𝒙𝒊 , 𝒙𝒊 ℓ 𝒊∈ 𝒏 , where 𝒙𝒊 ℓ = bit ℓ of 𝒙𝒊 % Users compute rows locally

• 𝒙∗ is “heavy”, hence 𝒕∗, 𝒙∗ ℓ appears > 𝟐𝝉 in 𝑺ℓ for every ℓ
• No collisions, hence 𝒕∗, 𝟏 − 𝒙∗ ℓ appears 0 times in 𝑺ℓ
• ⟹ Can identify every bit ℓ of 𝒙∗ by querying 𝕆 𝑺ℓ on 𝒕∗, 𝟎 and 𝒕∗, 𝟏

The Protocol: For every 𝒕 ∈ 𝑻 construct ෝ𝒙 𝒕 as follows:

∀ℓ ∈ 𝐥𝐨𝐠 𝑿 query 𝕆 𝑺ℓ on 𝒕, 𝟎 and 𝒕, 𝟏 and set ෝ𝒙 𝒕 ℓ ← 𝐚𝐫𝐠𝐦𝐚𝐱

By purple, ෝ𝒙 𝒕∗ = 𝒙∗ is identified

Proof of easier theorem

Simplifying assumption: No collisions in 𝒉 for elements in 𝑺

• The algorithm returns a list of size 𝑻 containing all elements 𝒙 with 𝒇𝑺 𝒙 ≥ 𝟐𝝉
• For our simplifying assumption, suffices to take 𝑻≳𝒏𝟐

• ⟹ Total runtime ≈ 𝒏𝟐 times the response time of 𝕆 (can do better)
• What about privacy? We had 𝐥𝐨𝐠 𝑿 executions of 𝕆
• ⟹ Overall 𝜺⋅𝐥𝐨𝐠 𝑿 -DP by composition

STEP BACK:

How can LDP be useful at all?

Next goal: design a
frequency oracle

Server

20

50

90

𝑹𝟏

𝑹𝟐

𝑹𝟑

3

11

4

Post-process Dataset
Statistics

Users

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ ±𝟏 𝒏, each user holds a bit
• Goal: Estimate number of ones, denoted 𝒇𝑺 𝟏

Simple Case: Oracle for X= ±𝟏

20

50

90

𝑹𝟏

𝑹𝟐

𝑹𝟑

3

11

4

Post-process Dataset
Statistics

Simple Case: Oracle for X= ±𝟏

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ ±𝟏 𝒏, each user holds a bit
• Goal: Estimate number of ones, denoted 𝒇𝑺 𝟏

Local randomizer – randomized response 𝑹(𝒙):

Return 𝒙 w.p. ≈
𝟏

𝟐
+ 𝝐 (and -𝒙 otherwise)

20

50

90

𝑹𝟏

𝑹𝟐

𝑹𝟑

3

11

4

Post-process Dataset
Statistics

[Warner 1965]

Simple Case: Oracle for X= ±𝟏

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ ±𝟏 𝒏, each user holds a bit
• Goal: Estimate number of ones, denoted 𝒇𝑺 𝟏

Local randomizer – randomized response 𝑹(𝒙):

Return 𝒙 w.p. ≈
𝟏

𝟐
+ 𝝐 (and -𝒙 otherwise)

Observe: Any output (±1) is almost as equally likely to result from any input (±1)

20

50

90

𝑹𝟏

𝑹𝟐

𝑹𝟑

3

11

4

Post-process Dataset
Statistics

[Warner 1965]

Simple Case: Oracle for X= ±𝟏

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ ±𝟏 𝒏, each user holds a bit
• Goal: Estimate number of ones, denoted 𝒇𝑺 𝟏

Local randomizer – randomized response 𝑹(𝒙):

Return 𝒙 w.p. ≈
𝟏

𝟐
+ 𝝐 (and -𝒙 otherwise)

Observe: Any output (±1) is almost as equally likely to result from any input (±1)

Protocol: From every user 𝒊 obtain 𝒚𝒊 ← 𝑹 𝒙𝒊 . Return
𝟏

𝟒𝝐
𝟐𝝐𝒏 + σ𝒊𝒚𝒊

20

50

90

𝑹𝟏

𝑹𝟐

𝑹𝟑

3

11

4

Post-process Dataset
Statistics

[Warner 1965]

Simple Case: Oracle for X= ±𝟏

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ ±𝟏 𝒏, each user holds a bit
• Goal: Estimate number of ones, denoted 𝒇𝑺 𝟏

Local randomizer – randomized response 𝑹(𝒙):

Return 𝒙 w.p. ≈
𝟏

𝟐
+ 𝝐 (and -𝒙 otherwise)

Observe: Any output (±1) is almost as equally likely to result from any input (±1)

Protocol: From every user 𝒊 obtain 𝒚𝒊 ← 𝑹 𝒙𝒊 . Return
𝟏

𝟒𝝐
𝟐𝝐𝒏 + σ𝒊𝒚𝒊

Analysis:

[Warner 1965]

𝔼 σ𝒊𝒚𝒊 = σ𝒊:𝒙𝒊=𝟏
𝔼 𝒚𝒊 + σ𝒊:𝒙𝒊=−𝟏

𝔼 𝒚𝒊

= 𝒇𝑺 𝟏 ⋅ 𝟐𝝐 − 𝒇𝑺 −𝟏 ⋅ 𝟐𝝐 = 𝒇𝑺 𝟏 ⋅ 𝟒𝝐 − 𝒏 ⋅ 𝟐𝝐

Hoeffding: w.h.p., estimation error at most ≈
𝟏

𝜺
𝒏

Simple Case: Oracle for X= ±𝟏

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ ±𝟏 𝒏, each user holds a bit
• Goal: Estimate number of ones, denoted 𝒇𝑺 𝟏

Local randomizer – randomized response 𝑹(𝒙):

Return 𝒙 w.p. ≈
𝟏

𝟐
+ 𝝐 (and -𝒙 otherwise)

Observe: Any output (±1) is almost as equally likely to result from any input (±1)

Protocol: From every user 𝒊 obtain 𝒚𝒊 ← 𝑹 𝒙𝒊 . Return
𝟏

𝟒𝝐
𝟐𝝐𝒏 + σ𝒊𝒚𝒊

Analysis:
= −𝟏 ⋅

𝟏

𝟐
+ 𝝐 + 𝟏 ⋅

𝟏

𝟐
− 𝝐 = −𝟐𝝐

[Warner 1965]

𝔼 σ𝒊𝒚𝒊 = σ𝒊:𝒙𝒊=𝟏
𝔼 𝒚𝒊 + σ𝒊:𝒙𝒊=−𝟏

𝔼 𝒚𝒊

= 𝒇𝑺 𝟏 ⋅ 𝟐𝝐 − 𝒇𝑺 −𝟏 ⋅ 𝟐𝝐 = 𝒇𝑺 𝟏 ⋅ 𝟒𝝐 − 𝒏 ⋅ 𝟐𝝐

Hoeffding: w.h.p., estimation error at most ≈
𝟏

𝜺
𝒏

Simple Case: Oracle for X= ±𝟏

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ ±𝟏 𝒏, each user holds a bit
• Goal: Estimate number of ones, denoted 𝒇𝑺 𝟏

Local randomizer – randomized response 𝑹(𝒙):

Return 𝒙 w.p. ≈
𝟏

𝟐
+ 𝝐 (and -𝒙 otherwise)

Observe: Any output (±1) is almost as equally likely to result from any input (±1)

Protocol: From every user 𝒊 obtain 𝒚𝒊 ← 𝑹 𝒙𝒊 . Return
𝟏

𝟒𝝐
𝟐𝝐𝒏 + σ𝒊𝒚𝒊

Analysis:
= −𝟏 ⋅

𝟏

𝟐
+ 𝝐 + 𝟏 ⋅

𝟏

𝟐
− 𝝐 = −𝟐𝝐

Takeaway: Counting bits under LDP is easy

[Warner 1965]

Frequency Oracle for a large domain X

General Case:

Server

20

50

90

𝑹𝟏

𝑹𝟐

𝑹𝟑

3

11

4

Post-process Dataset
Statistics

Users

Setting:

• Every user 𝒊 holds a value 𝒙𝒊 ∈ 𝑿

• Public uniform matrix 𝒁 ∈ ±𝟏 𝑿 ×𝒏

∀𝒊 ∈ [𝒏] and ∀𝒙 ∈ 𝑿 we have a bit 𝒁 𝒙, 𝒊

• User 𝒊 identifies corresponding bit 𝒁 𝒙𝒊, 𝒊

𝒊𝒁
𝑛 users

𝒙𝒊

d
o

m
ai

n
 𝑋

General Case: Oracle for a large domain X

Setting:

• Every user 𝒊 holds a value 𝒙𝒊 ∈ 𝑿

• Public uniform matrix 𝒁 ∈ ±𝟏 𝑿 ×𝒏

∀𝒊 ∈ [𝒏] and ∀𝒙 ∈ 𝑿 we have a bit 𝒁 𝒙, 𝒊

• User 𝒊 identifies corresponding bit 𝒁 𝒙𝒊, 𝒊

Users randomize their corresponding bits:

User 𝒊 sends 𝒚𝒊 = 𝒁 𝒙𝒊, 𝒊 w.p. ≈
𝟏

𝟐
+ 𝝐

𝒚𝒊 = −𝒁 𝒙𝒊, 𝒊 w.p. ≈
𝟏

𝟐
− 𝝐

𝒁

User 𝒊 flips
and sends

𝑛 users

d
o

m
ai

n
 𝑋

𝒊

𝒙𝒊

General Case: Oracle for a large domain X

Setting:

• Every user 𝒊 holds a value 𝒙𝒊 ∈ 𝑿

• Public uniform matrix 𝒁 ∈ ±𝟏 𝑿 ×𝒏

∀𝒊 ∈ [𝒏] and ∀𝒙 ∈ 𝑿 we have a bit 𝒁 𝒙, 𝒊

• User 𝒊 identifies corresponding bit 𝒁 𝒙𝒊, 𝒊

Users randomize their corresponding bits:

User 𝒊 sends 𝒚𝒊 = 𝒁 𝒙𝒊, 𝒊 w.p. ≈
𝟏

𝟐
+ 𝝐

𝒚𝒊 = −𝒁 𝒙𝒊, 𝒊 w.p. ≈
𝟏

𝟐
− 𝝐

Server: Given a query 𝒙 ∈ 𝑿, return ෠𝒇 𝒙 =
𝟏

𝟐𝝐
σ𝒊∈ 𝒏 𝒚𝒊 ⋅ 𝒁 𝒙, 𝒊

𝒁

User 𝒊 flips
and sends

𝑛 users

d
o

m
ai

n
 𝑋

𝒊

𝒙𝒊

General Case: Oracle for a large domain X

Setting:

• Every user 𝒊 holds a value 𝒙𝒊 ∈ 𝑿

• Public uniform matrix 𝒁 ∈ ±𝟏 𝑿 ×𝒏

∀𝒊 ∈ [𝒏] and ∀𝒙 ∈ 𝑿 we have a bit 𝒁 𝒙, 𝒊

• User 𝒊 identifies corresponding bit 𝒁 𝒙𝒊, 𝒊

Users randomize their corresponding bits:

User 𝒊 sends 𝒚𝒊 = 𝒁 𝒙𝒊, 𝒊 w.p. ≈
𝟏

𝟐
+ 𝝐

𝒚𝒊 = −𝒁 𝒙𝒊, 𝒊 w.p. ≈
𝟏

𝟐
− 𝝐

Server: Given a query 𝒙 ∈ 𝑿, return ෠𝒇 𝒙 =
𝟏

𝟐𝝐
σ𝒊∈ 𝒏 𝒚𝒊 ⋅ 𝒁 𝒙, 𝒊

d
o

m
ai

n
 𝑋

𝑛 users

𝒁 𝒋

𝒙𝒌=𝒙ℓ

𝒌 ℓ

𝒙𝒋

𝒊

𝒙𝒊

General Case: Oracle for a large domain X

Setting:

• Every user 𝒊 holds a value 𝒙𝒊 ∈ 𝑿

• Public uniform matrix 𝒁 ∈ ±𝟏 𝑿 ×𝒏

∀𝒊 ∈ [𝒏] and ∀𝒙 ∈ 𝑿 we have a bit 𝒁 𝒙, 𝒊

• User 𝒊 identifies corresponding bit 𝒁 𝒙𝒊, 𝒊

Users randomize their corresponding bits:

User 𝒊 sends 𝒚𝒊 = 𝒁 𝒙𝒊, 𝒊 w.p. ≈
𝟏

𝟐
+ 𝝐

𝒚𝒊 = −𝒁 𝒙𝒊, 𝒊 w.p. ≈
𝟏

𝟐
− 𝝐

Server: Given a query 𝒙 ∈ 𝑿, return ෠𝒇 𝒙 =
𝟏

𝟐𝝐
σ𝒊∈ 𝒏 𝒚𝒊 ⋅ 𝒁 𝒙, 𝒊

𝔼 ෍

𝒊∈ 𝒏

𝒚𝒊 ⋅ 𝒁 𝒙, 𝒊 = ෍

𝒊:𝒙𝒊=𝒙

𝔼 𝒚𝒊 ⋅ 𝒁 𝒙, 𝒊 + ෍

𝒊:𝒙𝒊≠𝒙

𝔼 𝒚𝒊 ⋅ 𝒁 𝒙, 𝒊 = 𝟐𝝐 ⋅ 𝒇𝑺 𝒙

Hoeffding bound: w.h.p. our estimation error is at most ≈
𝟏

𝝐
𝒏 ⋅ 𝐥𝐨𝐠 𝑿

d
o

m
ai

n
 𝑋

𝑛 users

𝒁 𝒋

𝒙𝒌=𝒙ℓ

𝒌 ℓ

𝒙𝒋

𝒊

𝒙𝒊

General Case: Oracle for a large domain X

The Local Model of Differential Privacy
Today’s Outline

1. What is the model?

2. Computing histograms

3. Computing averages

4. Clustering

5. LDP vs. statistical queries

6. Impossibility result for histograms

7. Interactive LDP protocols

Averages under LDP (informal)
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , each user holds a point 𝒙𝒊 ∈ ℝ
• Goal: Estimate the average of 𝑺

20

50

90

𝑹𝟏

𝑹𝟐

𝑹𝟑

3

11

4

Post-process Dataset
Statistics

Averages under LDP (informal)
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , each user holds a point 𝒙𝒊 ∈ ℝ
• Goal: Estimate the average of 𝑺

For example, maybe the inputs are salaries, and
our goal is to learn the average salary

20

50

90

𝑹𝟏

𝑹𝟐

𝑹𝟑

3

11

4

Post-process Dataset
Statistics

Averages under LDP (informal)
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , each user holds a point 𝒙𝒊 ∈ ℝ
• Goal: Estimate the average of 𝑺

Local randomizer 𝑹(𝒙):
Return 𝒙 + random Gaussian noise (appropriately calibrated)

It can be shown that appropriately calibrated noise “hides” the information of
every single individual, and that this randomizer satisfied the definition of LDP

20

50

90

𝑹𝟏

𝑹𝟐

𝑹𝟑

3

11

4

Post-process Dataset
Statistics

Protocol: From every user 𝒊 obtain 𝒚𝒊 ← 𝑹 𝒙𝒊 . Return
𝟏

𝒏
⋅ σ𝒊𝒚𝒊

Averages under LDP (informal)
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , each user holds a point 𝒙𝒊 ∈ ℝ
• Goal: Estimate the average of 𝑺

Local randomizer 𝑹(𝒙):
Return 𝒙 + random Gaussian noise (appropriately calibrated)

It can be shown that appropriately calibrated noise “hides” the information of
every single individual, and that this randomizer satisfied the definition of LDP

20

50

90

𝑹𝟏

𝑹𝟐

𝑹𝟑

3

11

4

Post-process Dataset
Statistics

Protocol: From every user 𝒊 obtain 𝒚𝒊 ← 𝑹 𝒙𝒊 . Return
𝟏

𝒏
⋅ σ𝒊𝒚𝒊

Averages under LDP (informal)
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , each user holds a point 𝒙𝒊 ∈ ℝ
• Goal: Estimate the average of 𝑺

Local randomizer 𝑹(𝒙):
Return 𝒙 + random Gaussian noise (appropriately calibrated)

It can be shown that appropriately calibrated noise “hides” the information of
every single individual, and that this randomizer satisfied the definition of LDP

𝔼
𝟏

𝒏
⋅ σ𝒊𝒚𝒊 =

𝟏

𝒏
⋅ σ𝒊𝒙𝒊 + 𝔼

𝟏

𝒏
⋅ σ𝒊𝐍𝐨𝐢𝐬𝐞𝒊 =

𝟏

𝒏
⋅ σ𝒊𝒙𝒊Analysis:

Protocol: From every user 𝒊 obtain 𝒚𝒊 ← 𝑹 𝒙𝒊 . Return
𝟏

𝒏
⋅ σ𝒊𝒚𝒊

Averages under LDP (informal)
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , each user holds a point 𝒙𝒊 ∈ ℝ
• Goal: Estimate the average of 𝑺

Local randomizer 𝑹(𝒙):
Return 𝒙 + random Gaussian noise (appropriately calibrated)

It can be shown that appropriately calibrated noise “hides” the information of
every single individual, and that this randomizer satisfied the definition of LDP

𝔼
𝟏

𝒏
⋅ σ𝒊𝒚𝒊 =

𝟏

𝒏
⋅ σ𝒊𝒙𝒊 + 𝔼

𝟏

𝒏
⋅ σ𝒊𝐍𝐨𝐢𝐬𝐞𝒊 =

𝟏

𝒏
⋅ σ𝒊𝒙𝒊Analysis:

• Error scales with 𝟏/ 𝒏
• Can be extended to averages in 𝒅-dimensions

Takeaway: We can compute averages under LDP

The Local Model of Differential Privacy
Today’s Outline

1. What is the model?

2. Computing histograms

3. Computing averages

4. Clustering

5. LDP vs. statistical queries

6. Impossibility result for histograms

7. Interactive LDP protocols

8. A related model

The 𝟏-Cluster Problem
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , each user holds a point 𝒙𝒊 ∈ ℝ𝒅

• Find: Center for a ball of minimal radius enclosing at least 𝒕 input points

Minimal ball
enclosing 7
points

The 𝟏-Cluster Problem
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , each user holds a point 𝒙𝒊 ∈ ℝ𝒅

• Find: Center for a ball of minimal radius enclosing at least 𝒕 input points

Minimal ball
enclosing 7
points

The 𝟏-Cluster Problem

Applications:

✔ Outlier removal

✔ Building block for more complex algorithms

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , each user holds a point 𝒙𝒊 ∈ ℝ𝒅

• Find: Center for a ball of minimal radius enclosing at least 𝒕 input points

Useful Tool: Locality-Sensitive Hashing (LSH) [Indyk&Motwani]

• Maximize the probability of collision for similar items
• Minimize the probability of collision for dissimilar items

The 𝟏-Cluster Problem

⋮

Useful Tool: Locality-Sensitive Hashing (LSH) [Indyk&Motwani]

• Maximize the probability of collision for similar items
• Minimize the probability of collision for dissimilar items

𝒉

𝒉

𝒉

𝒉

“Heavy” buckets correspond to clustersHopefully:

The 𝟏-Cluster Problem

The 𝟏-Cluster Problem

⋮

Useful Tool: Locality-Sensitive Hashing (LSH) [Indyk&Motwani]

• Maximize the probability of collision for similar items
• Minimize the probability of collision for dissimilar items

𝒉

𝒉

𝒉

𝒉

“Heavy” buckets correspond to clustersHopefully:

Intuitive Overview

1. Identify “heavy” buckets in the hash range, using LDP
tool for histograms

2. Identified buckets isolate clustered points

3. Clustered points can be averaged under LDP to obtain
an approximate cluster center

The 𝟏-Cluster Problem

⋮

Useful Tool: Locality-Sensitive Hashing (LSH) [Indyk&Motwani]

• Maximize the probability of collision for similar items
• Minimize the probability of collision for dissimilar items

𝒉

𝒉

𝒉

𝒉

“Heavy” buckets correspond to clustersHopefully:

Intuitive Overview

1. Identify “heavy” buckets in the hash range, using LDP
tool for histograms

2. Identified buckets isolate clustered points

3. Clustered points can be averaged under LDP to obtain
an approximate cluster center

The Local Model of Differential Privacy
Today’s Outline

1. What is the model?

2. Computing histograms

3. Computing averages

4. Clustering

5. LDP vs. statistical queries

6. Impossibility result for histograms

7. Interactive LDP protocols

The Local Model of Differential Privacy
Today’s Outline

1. What is the model?

2. Computing histograms

3. Computing averages

4. Clustering

5. LDP vs. statistical queries

6. Impossibility result for histograms

7. Interactive LDP protocols

The Local Model of Differential Privacy
Today’s Outline

1. What is the model?

2. Computing histograms

3. Computing averages

4. Clustering

5. LDP vs. statistical queries

6. Impossibility result for histograms

7. Interactive LDP protocols

Other problems that people have looked at:
• Convex optimization [FGV’17], [STU’17], [FMTT’18], [WGSX’20]
• Hypothesis testing [Sheffet’18], [GR’18], [JMNR’19]
• Hypothesis selection [GKKNWZ'20]
• Answering Queries [Bassily’19], [CKS’19]
• Reinforcement Learning [RZLS’20], [ZCHLW’20], [TWZW'21]
• Continual monitoring under LDP [EPK’14], [JRUW’18], [BY’21]

The Local Model of Differential Privacy
Today’s Outline

1. What is the model?

2. Computing histograms

3. Computing averages

4. Clustering

5. LDP vs. statistical queries

6. Impossibility result for histograms

7. Interactive LDP protocols

• Let 𝕯 be an unknown distribution over a domain 𝑿

• Consider a data analyst who wants to learn properties of 𝕯

• The analyst interacts with 𝕯 via statistical queries:

In each step, the analyst specifies a predicate 𝒑:𝑿 → 𝟎, 𝟏
and obtains an estimate for 𝔼𝒙∼𝕯 𝒑 𝒙

The Statistical Queries Model

Data analyst
Unknown dist. 𝕯
over domain 𝑿

• Let 𝕯 be an unknown distribution over a domain 𝑿

• Consider a data analyst who wants to learn properties of 𝕯

• The analyst interacts with 𝕯 via statistical queries:

In each step, the analyst specifies a predicate 𝒑:𝑿 → 𝟎, 𝟏
and obtains an estimate for 𝔼𝒙∼𝕯 𝒑 𝒙

The Statistical Queries Model

𝒑𝟏

𝒂𝟏 ≈ 𝔼𝒙∼𝕯 𝒑𝟏 𝒙

Data analyst
Unknown dist. 𝕯
over domain 𝑿

• Let 𝕯 be an unknown distribution over a domain 𝑿

• Consider a data analyst who wants to learn properties of 𝕯

• The analyst interacts with 𝕯 via statistical queries:

In each step, the analyst specifies a predicate 𝒑:𝑿 → 𝟎, 𝟏
and obtains an estimate for 𝔼𝒙∼𝕯 𝒑 𝒙

The Statistical Queries Model

𝒑𝟏

𝒂𝟏 ≈ 𝔼𝒙∼𝕯 𝒑𝟏 𝒙

Data analyst⋮

𝒑𝟐

Unknown dist. 𝕯
over domain 𝑿

𝒂𝟐 ≈ 𝔼𝒙∼𝕯 𝒑𝟐 𝒙

• Let 𝕯 be an unknown distribution over a domain 𝑿

• Consider a data analyst who wants to learn properties of 𝕯

• The analyst interacts with 𝕯 via statistical queries:

In each step, the analyst specifies a predicate 𝒑:𝑿 → 𝟎, 𝟏
and obtains an estimation for 𝔼𝒙∼𝕯 𝒑 𝒙

The Statistical Queries Model

Theorem [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08]

What you can learn in the SQ model is exactly what you can learn
in the LDP model (where every user holds a point sampled from 𝕯)

𝒑𝟏

𝒂𝟏 ≈ 𝔼𝒙∼𝕯 𝒑𝟏 𝒙

Data analyst⋮

𝒑𝟐

Unknown dist. 𝕯
over domain 𝑿

𝒂𝟐 ≈ 𝔼𝒙∼𝕯 𝒑𝟐 𝒙

• Let 𝕯 be an unknown distribution over a domain 𝑿

• Consider a data analyst who wants to learn properties of 𝕯

• The analyst interacts with 𝕯 via statistical queries:

In each step, the analyst specifies a predicate 𝒑:𝑿 → 𝟎, 𝟏
and obtains an estimation for 𝔼𝒙∼𝕯 𝒑 𝒙

𝒑𝟏

𝒂𝟏 ≈ 𝔼𝒙∼𝕯 𝒑𝟏 𝒙

Data analyst⋮

𝒑𝟐

Unknown dist. 𝕯
over domain 𝑿

𝒂𝟐 ≈ 𝔼𝒙∼𝕯 𝒑𝟐 𝒙

The Statistical Queries Model

Theorem [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08]

What you can learn in the SQ model is exactly what you can learn
in the LDP model (where every user holds a point sampled from 𝕯)

Easy direction of equivalence:
Every statistical query 𝒑 can be answered under LDP by estimating the number of
users 𝒊 s.t. 𝒑 𝒙𝒊 = 𝟏

• Let 𝕯 be an unknown distribution over a domain 𝑿

• Consider a data analyst who wants to learn properties of 𝕯

• The analyst interacts with 𝕯 via statistical queries:

In each step, the analyst specifies a predicate 𝒑:𝑿 → 𝟎, 𝟏
and obtains an estimation for 𝔼𝒙∼𝕯 𝒑 𝒙

𝒑𝟏

𝒂𝟏 ≈ 𝔼𝒙∼𝕯 𝒑𝟏 𝒙

Data analyst⋮

𝒑𝟐

Unknown dist. 𝕯
over domain 𝑿

𝒂𝟐 ≈ 𝔼𝒙∼𝕯 𝒑𝟐 𝒙

The Statistical Queries Model

Theorem [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08]

What you can learn in the SQ model is exactly what you can learn
in the LDP model (where every user holds a point sampled from 𝕯)

Easy direction of equivalence:
Every statistical query 𝒑 can be answered under LDP by estimating the number of
users 𝒊 s.t. 𝒑 𝒙𝒊 = 𝟏

The great news: The SQ model is well-studied and known to be very
expressive. All the existing SQ algorithms can be implemented under LDP!

The great impossibility news*: What cannot be done in the SQ model
cannot be done under LDP, e.g., learning PARITY

The Local Model of Differential Privacy
Today’s Outline

1. What is the model?

2. Computing histograms

3. Computing averages

4. Clustering

5. LDP vs. statistical queries

6. Impossibility result for histograms

7. Interactive LDP protocols

Theorem: Under LDP, must have error 𝛀
𝟏

𝜺
𝒏 ⋅ 𝐥𝐨𝐠 𝑿 [Chan Shi Song] [Bassily Smith]

Histograms under LDP – An impossibility result

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

Theorem: Under LDP, must have error 𝛀
𝟏

𝜺
𝒏 ⋅ 𝐥𝐨𝐠 𝑿 [Chan Shi Song] [Bassily Smith]

Proof idea: 𝛀 𝒏 for estimating the multiplicity of 1 in the database

• Let 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝟎, 𝟏 𝒏 be chosen uniformly at random

Histograms under LDP – An impossibility result

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

Theorem: Under LDP, must have error 𝛀
𝟏

𝜺
𝒏 ⋅ 𝐥𝐨𝐠 𝑿 [Chan Shi Song] [Bassily Smith]

Proof idea: 𝛀 𝒏 for estimating the multiplicity of 1 in the database

• Let 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝟎, 𝟏 𝒏 be chosen uniformly at random

• Let 𝑻 denote the transcript. Main observation: inputs remain roughly uniform given the transcript

• Specifically, for every 𝒕 and 𝒊 we have: 𝐏𝐫 𝒙𝒊 = 𝟏 𝑻 = 𝒕 ≈
𝟏

𝟐
≈ 𝐏𝐫 𝒙𝒊 = 𝟎 𝑻 = 𝒕

Histograms under LDP – An impossibility result

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

Theorem: Under LDP, must have error 𝛀
𝟏

𝜺
𝒏 ⋅ 𝐥𝐨𝐠 𝑿 [Chan Shi Song] [Bassily Smith]

Proof idea: 𝛀 𝒏 for estimating the multiplicity of 1 in the database

• Let 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝟎, 𝟏 𝒏 be chosen uniformly at random

• Let 𝑻 denote the transcript. Main observation: inputs remain roughly uniform given the transcript

• Specifically, for every 𝒕 and 𝒊 we have: 𝐏𝐫 𝒙𝒊 = 𝟏 𝑻 = 𝒕 ≈
𝟏

𝟐
≈ 𝐏𝐫 𝒙𝒊 = 𝟎 𝑻 = 𝒕

Pr 𝑥𝑖 = 1 𝑇 = 𝑡 = Pr 𝑇 = 𝑡 𝑥𝑖 = 1 ⋅
Pr 𝑥𝑖 = 1

Pr 𝑇 = 𝑡
≈ Pr 𝑇 = 𝑡 𝑥𝑖 = 0 ⋅

Pr 𝑥𝑖 = 0

Pr 𝑇 = 𝑡
= Pr 𝑥𝑖 = 0 𝑇 = 𝑡

Histograms under LDP – An impossibility result

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

Theorem: Under LDP, must have error 𝛀
𝟏

𝜺
𝒏 ⋅ 𝐥𝐨𝐠 𝑿 [Chan Shi Song] [Bassily Smith]

Proof idea: 𝛀 𝒏 for estimating the multiplicity of 1 in the database

• Let 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝟎, 𝟏 𝒏 be chosen uniformly at random

• Let 𝑻 denote the transcript. Main observation: inputs remain roughly uniform given the transcript

• Specifically, for every 𝒕 and 𝒊 we have: 𝐏𝐫 𝒙𝒊 = 𝟏 𝑻 = 𝒕 ≈
𝟏

𝟐
≈ 𝐏𝐫 𝒙𝒊 = 𝟎 𝑻 = 𝒕

Pr 𝑥𝑖 = 1 𝑇 = 𝑡 = Pr 𝑇 = 𝑡 𝑥𝑖 = 1 ⋅
Pr 𝑥𝑖 = 1

Pr 𝑇 = 𝑡
≈ Pr 𝑇 = 𝑡 𝑥𝑖 = 0 ⋅

Pr 𝑥𝑖 = 0

Pr 𝑇 = 𝑡
= Pr 𝑥𝑖 = 0 𝑇 = 𝑡

• So, conditioned on the transcript, σ𝒙𝒊 is the sum of 𝑛 nearly uniform bits (and they remain

independent). By anti-Chernoff, the error is 𝛀 𝒏

Histograms under LDP – An impossibility result

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

Theorem: Under LDP, must have error 𝛀
𝟏

𝜺
𝒏 ⋅ 𝐥𝐨𝐠 𝑿 [Chan Shi Song] [Bassily Smith]

Proof idea: 𝛀 𝒏 for estimating the multiplicity of 1 in the database

• Let 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝟎, 𝟏 𝒏 be chosen uniformly at random

• Let 𝑻 denote the transcript. Main observation: inputs remain roughly uniform given the transcript

• Specifically, for every 𝒕 and 𝒊 we have: 𝐏𝐫 𝒙𝒊 = 𝟏 𝑻 = 𝒕 ≈
𝟏

𝟐
≈ 𝐏𝐫 𝒙𝒊 = 𝟎 𝑻 = 𝒕

Pr 𝑥𝑖 = 1 𝑇 = 𝑡 = Pr 𝑇 = 𝑡 𝑥𝑖 = 1 ⋅
Pr 𝑥𝑖 = 1

Pr 𝑇 = 𝑡
≈ Pr 𝑇 = 𝑡 𝑥𝑖 = 0 ⋅

Pr 𝑥𝑖 = 0

Pr 𝑇 = 𝑡
= Pr 𝑥𝑖 = 0 𝑇 = 𝑡

• So, conditioned on the transcript, σ𝒙𝒊 is the sum of 𝑛 nearly uniform bits (and they remain

independent). By anti-Chernoff, the error is 𝛀 𝒏

Histograms under LDP – An impossibility result

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

The Local Model of Differential Privacy
Today’s Outline

1. What is the model?

2. Computing histograms

3. Computing averages

4. Clustering

5. LDP vs. statistical queries

6. Impossibility result for histograms

7. Interactive LDP protocols

Non- vs. Semi- vs. Fully-interactive LDP

 Server

𝒙𝟏

𝒙𝒏

 Server

𝒙𝟏

𝒙𝒏

Non- vs. Semi- vs. Fully-interactive LDP

𝑹𝟏

𝑹𝒏

 Server

𝒙𝟏

𝒙𝒏

Non- vs. Semi- vs. Fully-interactive LDP

𝑹𝟏
𝑹𝟏 𝒙𝟏

𝑹𝒏 𝒙𝒏

𝑹𝒏

 Server

𝒙𝟏

𝒙𝒏

• Non-interactive protocols prepare all the 𝓡𝑖’s before receiving any messages

Non- vs. Semi- vs. Fully-interactive LDP

𝑹𝟏
𝑹𝟏 𝒙𝟏

𝑹𝒏 𝒙𝒏

𝑹𝒏

• Non-interactive protocols prepare all the 𝓡𝑖’s before receiving any messages

 Server

𝒙𝟏

𝒙𝒏

Non- vs. Semi- vs. Fully-interactive LDP

• Non-interactive protocols prepare all the 𝓡𝑖’s before receiving any messages

 Server

𝒙𝟏

𝒙𝒏

𝑹𝟏
𝑹𝟏 𝒙𝟏

Non- vs. Semi- vs. Fully-interactive LDP

 Server

𝒙𝟏

𝒙𝒏

• Non-interactive protocols prepare all the 𝓡𝑖’s before receiving any messages

𝑹𝟏
𝑹𝟏 𝒙𝟏

𝑹𝒏 𝒙𝒏

𝑹𝒏

Non- vs. Semi- vs. Fully-interactive LDP

 Server

𝒙𝟏

𝒙𝒏

• Non-interactive protocols prepare all the 𝓡𝑖’s before receiving any messages
• Semi-interactive protocols can interact with every user at most once

𝑹𝟏
𝑹𝟏 𝒙𝟏

𝑹𝒏 𝒙𝒏

𝑹𝒏

Non- vs. Semi- vs. Fully-interactive LDP

• Non-interactive protocols prepare all the 𝓡𝑖’s before receiving any messages
• Semi-interactive protocols can interact with every user at most once

 Server

𝒙𝟏

𝒙𝒏

Non- vs. Semi- vs. Fully-interactive LDP

• Non-interactive protocols prepare all the 𝓡𝑖’s before receiving any messages
• Semi-interactive protocols can interact with every user at most once

 Server

𝒙𝟏

𝒙𝒏

𝑹𝟏
𝑹𝟏 𝒙𝟏

Non- vs. Semi- vs. Fully-interactive LDP

• Non-interactive protocols prepare all the 𝓡𝑖’s before receiving any messages
• Semi-interactive protocols can interact with every user at most once

 Server

𝒙𝟏

𝒙𝒏

𝑹𝟏
𝑹𝟏 𝒙𝟏

𝑹𝒏 𝒙𝒏

𝑹𝒏

Non- vs. Semi- vs. Fully-interactive LDP

• Non-interactive protocols prepare all the 𝓡𝑖’s before receiving any messages
• Semi-interactive protocols can interact with every user at most once

 Server

𝒙𝟏

𝒙𝒏

𝑹𝟏
𝑹𝟏 𝒙𝟏

𝑹𝟏
′ 𝒙𝟏

𝑹𝒏 𝒙𝒏

𝑹𝟏
′

𝑹𝒏

Non- vs. Semi- vs. Fully-interactive LDP

• Non-interactive protocols prepare all the 𝓡𝑖’s before receiving any messages
• Semi-interactive protocols can interact with every user at most once

 Server

𝑹𝟏
𝒙𝟏

𝒙𝒏

𝑹𝟏 𝒙𝟏

𝑹𝟏
′ 𝒙𝟏

𝑹𝒏 𝒙𝒏

𝑹𝒏
′ 𝒙𝒏

𝑹𝟏
′

𝑹𝒏

𝑹𝒏
′

Non- vs. Semi- vs. Fully-interactive LDP

• Non-interactive protocols prepare all the 𝓡𝑖’s before receiving any messages
• Semi-interactive protocols can interact with every user at most once
• Fully-interactive protocols are unrestricted.

 Server

𝒙𝟏

𝒙𝒏

𝑹𝟏
𝑹𝟏 𝒙𝟏

𝑹𝟏
′ 𝒙𝟏

𝑹𝒏 𝒙𝒏

𝑹𝒏
′ 𝒙𝒏

𝑹𝟏
′

𝑹𝒏

𝑹𝒏
′

Non- vs. Semi- vs. Fully-interactive LDP

• Non-interactive protocols prepare all the 𝓡𝑖’s before receiving any messages
• Semi-interactive protocols can interact with every user at most once
• Fully-interactive protocols are unrestricted.

 Server

𝒙𝟏

𝒙𝒏

𝑹𝟏
𝑹𝟏 𝒙𝟏

𝑹𝟏
′ 𝒙𝟏

𝑹𝒏 𝒙𝒏

𝑹𝒏
′ 𝒙𝒏

𝑹𝟏
′

𝑹𝒏

𝑹𝒏
′

Non- vs. Semi- vs. Fully-interactive LDP

Separating non- from semi-interactive LDP:
• Masked PARITY [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08]
• Learning halfspaces [Daniely, Feldman 19]

Separating semi- from fully-interactive LDP:
• Hidden layers problem [Joseph, Mao, Roth 20]
• Pointer chasing [Joseph, Mao, Roth 20]

A simple pointer chasing problem
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , where:

• Every user 𝟏 ≤ 𝒊 < 𝒏/𝟐 holds input 𝒙𝒊 ∈ 𝟏, 𝟐, … , 𝑳

• Every user 𝒏/𝟐 ≤ 𝒋 ≤ 𝒏 holds input 𝒙𝒋 = 𝒙𝒋 𝟏 ,… , 𝒙𝒋 𝑳 ∈ 𝟎, 𝟏 𝑳

• Goal: If 𝒙𝟏 = 𝒙𝟐 = ⋯ = 𝒙𝒏/𝟐 = ℓ, then estimate the average
𝟐

𝒏
σ𝒋=𝒏/𝟐
𝒏 𝒙𝒋 ℓ

A simple pointer chasing problem
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , where:

• Every user 𝟏 ≤ 𝒊 < 𝒏/𝟐 holds input 𝒙𝒊 ∈ 𝟏, 𝟐, … , 𝑳

• Every user 𝒏/𝟐 ≤ 𝒋 ≤ 𝒏 holds input 𝒙𝒋 = 𝒙𝒋 𝟏 ,… , 𝒙𝒋 𝑳 ∈ 𝟎, 𝟏 𝑳

• Goal: If 𝒙𝟏 = 𝒙𝟐 = ⋯ = 𝒙𝒏/𝟐 = ℓ, then estimate the average
𝟐

𝒏
σ𝒋=𝒏/𝟐
𝒏 𝒙𝒋 ℓ

Observation: Can solve easily under LDP with two rounds (provided that 𝒏 ≳
𝟏

𝜺
𝐥𝐨𝐠 𝑳):

A simple pointer chasing problem
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , where:

• Every user 𝟏 ≤ 𝒊 < 𝒏/𝟐 holds input 𝒙𝒊 ∈ 𝟏, 𝟐, … , 𝑳

• Every user 𝒏/𝟐 ≤ 𝒋 ≤ 𝒏 holds input 𝒙𝒋 = 𝒙𝒋 𝟏 ,… , 𝒙𝒋 𝑳 ∈ 𝟎, 𝟏 𝑳

• Goal: If 𝒙𝟏 = 𝒙𝟐 = ⋯ = 𝒙𝒏/𝟐 = ℓ, then estimate the average
𝟐

𝒏
σ𝒋=𝒏/𝟐
𝒏 𝒙𝒋 ℓ

Observation: Can solve easily under LDP with two rounds (provided that 𝒏 ≳
𝟏

𝜺
𝐥𝐨𝐠 𝑳):

• First run an LDP protocol for histograms over users 1 ≤ 𝑖 <
𝑛

2
to identify ℓ (if exists)

• Then run an LDP averaging protocol over the ℓth coordinate of users
𝑛

2
≤ 𝑖 ≤ 𝑛

A simple pointer chasing problem
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , where:

• Every user 𝟏 ≤ 𝒊 < 𝒏/𝟐 holds input 𝒙𝒊 ∈ 𝟏, 𝟐, … , 𝑳

• Every user 𝒏/𝟐 ≤ 𝒋 ≤ 𝒏 holds input 𝒙𝒋 = 𝒙𝒋 𝟏 ,… , 𝒙𝒋 𝑳 ∈ 𝟎, 𝟏 𝑳

• Goal: If 𝒙𝟏 = 𝒙𝟐 = ⋯ = 𝒙𝒏/𝟐 = ℓ, then estimate the average
𝟐

𝒏
σ𝒋=𝒏/𝟐
𝒏 𝒙𝒋 ℓ

Observation: Can solve easily under LDP with two rounds (provided that 𝒏 ≳
𝟏

𝜺
𝐥𝐨𝐠 𝑳):

• First run an LDP protocol for histograms over users 1 ≤ 𝑖 <
𝑛

2
to identify ℓ (if exists)

• Then run an LDP averaging protocol over the ℓth coordinate of users
𝑛

2
≤ 𝑖 ≤ 𝑛

Theorem: Cannot solve under LDP with one round (unless 𝑛 is MUCH larger)

A simple pointer chasing problem
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , where:

• Every user 𝟏 ≤ 𝒊 < 𝒏/𝟐 holds input 𝒙𝒊 ∈ 𝟏, 𝟐, … , 𝑳

• Every user 𝒏/𝟐 ≤ 𝒋 ≤ 𝒏 holds input 𝒙𝒋 = 𝒙𝒋 𝟏 ,… , 𝒙𝒋 𝑳 ∈ 𝟎, 𝟏 𝑳

• Goal: If 𝒙𝟏 = 𝒙𝟐 = ⋯ = 𝒙𝒏/𝟐 = ℓ, then estimate the average
𝟐

𝒏
σ𝒋=𝒏/𝟐
𝒏 𝒙𝒋 ℓ

Observation: Can solve easily under LDP with two rounds (provided that 𝒏 ≳
𝟏

𝜺
𝐥𝐨𝐠 𝑳):

• First run an LDP protocol for histograms over users 1 ≤ 𝑖 <
𝑛

2
to identify ℓ (if exists)

• Then run an LDP averaging protocol over the ℓth coordinate of users
𝑛

2
≤ 𝑖 ≤ 𝑛

Theorem: Cannot solve under LDP with one round (unless 𝑛 is MUCH larger)

Proof idea: If there is a non-interactive LDP protocol Π for this problem, then there is an LDP protocol for
computing the averages of all 𝑳 coordinates of the 𝒙𝒋’s, which cannot exist.

A simple pointer chasing problem
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , where:

• Every user 𝟏 ≤ 𝒊 < 𝒏/𝟐 holds input 𝒙𝒊 ∈ 𝟏, 𝟐, … , 𝑳

• Every user 𝒏/𝟐 ≤ 𝒋 ≤ 𝒏 holds input 𝒙𝒋 = 𝒙𝒋 𝟏 ,… , 𝒙𝒋 𝑳 ∈ 𝟎, 𝟏 𝑳

• Goal: If 𝒙𝟏 = 𝒙𝟐 = ⋯ = 𝒙𝒏/𝟐 = ℓ, then estimate the average
𝟐

𝒏
σ𝒋=𝒏/𝟐
𝒏 𝒙𝒋 ℓ

Observation: Can solve easily under LDP with two rounds (provided that 𝒏 ≳
𝟏

𝜺
𝐥𝐨𝐠 𝑳):

• First run an LDP protocol for histograms over users 1 ≤ 𝑖 <
𝑛

2
to identify ℓ (if exists)

• Then run an LDP averaging protocol over the ℓth coordinate of users
𝑛

2
≤ 𝑖 ≤ 𝑛

Theorem: Cannot solve under LDP with one round (unless 𝑛 is MUCH larger)

Proof idea: If there is a non-interactive LDP protocol Π for this problem, then there is an LDP protocol for
computing the averages of all 𝑳 coordinates of the 𝒙𝒋’s, which cannot exist.

The protocol:
(1) Execute Π on the 𝒙𝒋’s and obtain their messages.

(2) For every 1 ≤ ℓ ≤ 𝐿, simulate the 𝑥𝑖 users in Π on input 𝑥𝑖 = ℓ, to obtain estimation for the ℓth oordinate

The Local Model of Differential Privacy
Today’s Outline

1. What is the model?

2. Computing histograms

3. Computing averages

4. Clustering

5. LDP vs. statistical queries

6. Impossibility result for histograms

7. Interactive LDP protocols

Summary

Questions?

• LDP provides strong privacy and trust guarantees:

 No individual information is being collected
 Privacy preserved even if the organization is subpoenaed

• Many tasks are compatible with LDP:

 Histograms, Averages, Clustering, …

• Accuracy is generally reduced compared to the centralized model

