
About this course

• The local model
• The shuffle model
• Streaming/online settings
• Differential privacy as a tool

Differential privacy without a central database
Boston Differential Privacy Summer School, 6-10 June 2022
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Google, Apple, and Microsoft have been using locally-differentially-private 
algorithms in the Chrome browser, in iOS-10, and in Windows 10

Local Differential Privacy (LDP): Motivation

How can organizations collect high-quality aggregate information from their user 
bases, while guaranteeing that no individual-specific information is collected?

How to learn new words?

• Identify common “typos” and add 
them to dictionary!

• Privacy concerns?

Great selfie!

Thanks!

What is a selfie?
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What is Local Differential Privacy?

Definition – Local Differential Privacy (simplified)

• 𝝐-LDP algorithm accesses every data entry only once, via an 𝝐-local randomizer

• 𝝐-local randomizer is an algorithm 𝑹:𝑿 → 𝒀 s.t. ∀𝒙, 𝒙′ ∈ 𝑿, ∀𝒚 ∈ 𝒀

𝐏𝐫 𝑹 𝒙 = 𝒚 ≤ 𝒆𝝐 ⋅ 𝐏𝐫 𝑹 𝒙′ = 𝒚
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Compare to the 
centralized model

In the standard (centralized) model of DP, we trust the analyzer, and provide privacy against
any observer to the outcome of the computation. But the analyzer learns everything

[Dwork, McSherry, Nissim, Smith 06],  [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08],   [Evfimievski, Gehrke, Srikant 03]



Why use LDP?

• Valuable information about users while providing strong privacy and trust guarantees

• Privacy preserved even if the organization is subpoenaed

• Reduces organization liability for securing the data

• As every user randomizes her data, accuracy is reduced

• Number of users might be very large (in the millions)

• Optimizing runtime and memory usage becomes crucial

Challenges



The Local Model of Differential Privacy
Today’s Outline

1. What is the model?

2. Computing histograms

3. Computing averages

4. Clustering

5. LDP vs. statistical queries

6. Impossibility result for histograms

7. Interactive LDP protocols



Problem Statement: Histograms

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

* The error of the protocol is the maximal estimation error
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• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙

* The error of the protocol is the maximal estimation error

For example, 𝑿 could be the set of all (reasonably length) URL
domains, and for every user 𝒊 we have 𝒙𝒊 = homepage address

The goal here would be to estimate the
popularity of different homepage addresses
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• Arguably the most well-studied problem under LDP, Important 
subroutine for solving many other problems 
[MS 06], [HKR 12], [EP 14], [BS 15], [QYYKXR 16], [TVVKFSD 17]…

• Google and Apple have been using using LDP algorithms for this 
problem in the Chrome browser and in iOS-10:
 QuickType suggestions, Emoji suggestions, Lookup Hints, Energy Draining 

Domains, Autoplay Intent Detection, Crashing Domains, Health Type Usage

Why solve under LDP?

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙
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Goal 1 – Frequency Oracle:
Frequency oracle is an algorithm that, after communicating with the users, outputs a data structure
capable of approximating 𝒇𝑺 𝒙 for every 𝒙 ∈ 𝑿

Goal 2 – Heavy Hitters:
Identify a (short) subset 𝐋 ⊆ 𝑿 of “heavy-hitters” with estimates for their frequencies (the 
frequency of every 𝒙 ∉ 𝑳 is estimated as 0)
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Observe: If 𝑿 is large, then efficient algorithms cannot output estimations for every 𝒙 ∈ 𝑿 directly 

Goal 1 – Frequency Oracle:
Frequency oracle is an algorithm that, after communicating with the users, outputs a data structure
capable of approximating 𝒇𝑺 𝒙 for every 𝒙 ∈ 𝑿

Goal 2 – Heavy Hitters:
Identify a (short) subset 𝐋 ⊆ 𝑿 of “heavy-hitters” with estimates for their frequencies (the 
frequency of every 𝒙 ∉ 𝑳 is estimated as 0)

• Heavy-hitters is a particular kind of a frequency oracle, so it might be harder to obtain
• Ignoring runtime, the two goals are equivalent

• What’s next? (1) Show a reduction from Goal 2 to Goal 1
(2) Show how to achieve Goal 1



Thm: If there is an 𝜺-LDP frequency oracle with error 𝝉 then there is an 𝑶 𝜺 -
LDP algorithm for heavy-hitters  with error 𝑶 𝝉 with almost the same runtime, 
space, and communication complexities

Easier Thm: If there is an efficient 𝜺-LDP frequency oracle with error 𝝉 then 
there is an efficient 𝜺⋅𝐥𝐨𝐠 𝑿 -LDP algorithm for heavy-hitters  with error 𝟐𝝉

Part 1: Use Oracle to identify Heavy-Hitters

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ 𝑿𝒏, where user 𝒊 holds 𝒙𝒊 ∈ 𝑿
• Goal: For every 𝒙 ∈ 𝑿, estimate the multiplicity of 𝒙 in 𝑺, denoted 𝒇𝑺 𝒙



1) Let 𝕆 be an 𝜺-LDP frequency oracle with error 𝝉
2) There are 𝒏 users where every user 𝒊 ∈ 𝒏 holds an input 𝒙𝒊 ∈ 𝑿. Denote 𝑺 = 𝒙𝟏, … , 𝒙𝒏

Proof of easier theorem
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3) Let 𝒉:𝑿 → 𝑻 be a publicly known hash function

Intuition: if 𝒉 isolates heavy-hitters then suffices to query 𝕆 on hash range. But how?

Proof of easier theorem

Simplifying assumption: No collisions in 𝒉 for elements in 𝑺
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Proof of easier theorem

Simplifying assumption: No collisions in 𝒉 for elements in 𝑺

• The algorithm returns a list of size 𝑻 containing all elements 𝒙 with 𝒇𝑺 𝒙 ≥ 𝟐𝝉
• For our simplifying assumption, suffices to take 𝑻≳𝒏𝟐

• ⟹ Total runtime ≈ 𝒏𝟐 times the response time of 𝕆 (can do better)
• What about privacy? We had 𝐥𝐨𝐠 𝑿 executions of 𝕆
• ⟹ Overall 𝜺⋅𝐥𝐨𝐠 𝑿 -DP by composition



STEP BACK:

How can LDP be useful at all?

Next goal: design a 
frequency oracle
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• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ ±𝟏 𝒏, each user holds a bit
• Goal: Estimate number of ones, denoted 𝒇𝑺 𝟏

Simple Case: Oracle for X= ±𝟏
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Simple Case: Oracle for X= ±𝟏

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ ±𝟏 𝒏, each user holds a bit
• Goal: Estimate number of ones, denoted 𝒇𝑺 𝟏

Local randomizer – randomized response 𝑹(𝒙):

Return 𝒙 w.p.  ≈
𝟏

𝟐
+ 𝝐 (and -𝒙 otherwise)
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The Local Model of Differential Privacy
Today’s Outline

1. What is the model?

2. Computing histograms

3. Computing averages

4. Clustering

5. LDP vs. statistical queries

6. Impossibility result for histograms

7. Interactive LDP protocols



Averages under LDP (informal)
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , each user holds a point 𝒙𝒊 ∈ ℝ
• Goal: Estimate the average of 𝑺
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Averages under LDP (informal)
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , each user holds a point 𝒙𝒊 ∈ ℝ
• Goal: Estimate the average of 𝑺

For example, maybe the inputs are salaries, and 
our goal is to learn the average salary
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• Goal: Estimate the average of 𝑺

Local randomizer 𝑹(𝒙):
Return 𝒙 + random Gaussian noise (appropriately calibrated)

It can be shown that appropriately calibrated noise “hides” the information of 
every single individual, and that this randomizer satisfied the definition of LDP
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Local randomizer 𝑹(𝒙):
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Protocol: From every user 𝒊 obtain 𝒚𝒊 ← 𝑹 𝒙𝒊 . Return   
𝟏

𝒏
⋅ σ𝒊𝒚𝒊

Averages under LDP (informal)
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , each user holds a point 𝒙𝒊 ∈ ℝ
• Goal: Estimate the average of 𝑺

Local randomizer 𝑹(𝒙):
Return 𝒙 + random Gaussian noise (appropriately calibrated)

It can be shown that appropriately calibrated noise “hides” the information of 
every single individual, and that this randomizer satisfied the definition of LDP
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⋅ σ𝒊𝒙𝒊Analysis:

• Error scales with 𝟏/ 𝒏
• Can be extended to averages in 𝒅-dimensions

Takeaway:  We can compute averages under LDP



The Local Model of Differential Privacy
Today’s Outline

1. What is the model?

2. Computing histograms

3. Computing averages

4. Clustering

5. LDP vs. statistical queries

6. Impossibility result for histograms

7. Interactive LDP protocols

8. A related model



The 𝟏-Cluster Problem
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , each user holds a point 𝒙𝒊 ∈ ℝ𝒅

• Find: Center for a ball of minimal radius enclosing at least 𝒕 input points



Minimal ball 
enclosing 7 
points

The 𝟏-Cluster Problem
• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , each user holds a point 𝒙𝒊 ∈ ℝ𝒅

• Find: Center for a ball of minimal radius enclosing at least 𝒕 input points



Minimal ball 
enclosing 7 
points

The 𝟏-Cluster Problem

Applications: 

✔ Outlier removal

✔ Building block for more complex algorithms

• Distributed database 𝑺 = 𝒙𝟏, … , 𝒙𝒏 , each user holds a point 𝒙𝒊 ∈ ℝ𝒅

• Find: Center for a ball of minimal radius enclosing at least 𝒕 input points



Useful Tool: Locality-Sensitive Hashing (LSH)  [Indyk&Motwani]

• Maximize the probability of collision for similar items
• Minimize the probability of collision for dissimilar items

The 𝟏-Cluster Problem
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2. Identified buckets isolate clustered points

3. Clustered points can be averaged under LDP to obtain 
an approximate cluster center
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The Local Model of Differential Privacy
Today’s Outline

1. What is the model?

2. Computing histograms

3. Computing averages

4. Clustering

5. LDP vs. statistical queries

6. Impossibility result for histograms

7. Interactive LDP protocols

Other problems that people have looked at:
• Convex optimization [FGV’17], [STU’17], [FMTT’18], [WGSX’20]
• Hypothesis testing [Sheffet’18], [GR’18], [JMNR’19]
• Hypothesis selection [GKKNWZ'20]
• Answering Queries [Bassily’19], [CKS’19]
• Reinforcement Learning [RZLS’20], [ZCHLW’20], [TWZW'21]
• Continual monitoring under LDP [EPK’14], [JRUW’18], [BY’21]
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• Let 𝕯 be an unknown distribution over a domain 𝑿

• Consider a data analyst who wants to learn properties of 𝕯

• The analyst interacts with 𝕯 via statistical queries:

In each step, the analyst specifies a predicate 𝒑:𝑿 → 𝟎, 𝟏
and obtains an estimate for 𝔼𝒙∼𝕯 𝒑 𝒙

The Statistical Queries Model

Data analyst
Unknown dist. 𝕯
over domain 𝑿
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• Consider a data analyst who wants to learn properties of 𝕯
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In each step, the analyst specifies a predicate 𝒑:𝑿 → 𝟎, 𝟏
and obtains an estimation for 𝔼𝒙∼𝕯 𝒑 𝒙

The Statistical Queries Model

Theorem [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08]

What you can learn in the SQ model is exactly what you can learn 
in the LDP model (where every user holds a point sampled from 𝕯)
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Separating non- from semi-interactive LDP:
• Masked PARITY [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08]
• Learning halfspaces [Daniely, Feldman 19]

Separating semi- from fully-interactive LDP:
• Hidden layers problem [Joseph, Mao, Roth 20]
• Pointer chasing [Joseph, Mao, Roth 20]
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Proof idea: If there is a non-interactive LDP protocol Π for this problem, then there is an LDP protocol for 
computing the averages of all 𝑳 coordinates of the 𝒙𝒋’s, which cannot exist.
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Observation: Can solve easily under LDP with two rounds (provided that 𝒏 ≳
𝟏

𝜺
𝐥𝐨𝐠 𝑳 ):

• First run an LDP protocol for histograms over users 1 ≤ 𝑖 <
𝑛

2
to identify ℓ (if exists)

• Then run an LDP averaging protocol over the ℓth coordinate of users 
𝑛

2
≤ 𝑖 ≤ 𝑛

Theorem: Cannot solve under LDP with one round (unless 𝑛 is MUCH larger)

Proof idea: If there is a non-interactive LDP protocol Π for this problem, then there is an LDP protocol for 
computing the averages of all 𝑳 coordinates of the 𝒙𝒋’s, which cannot exist.

The protocol: 
(1) Execute Π on the 𝒙𝒋’s and obtain their messages. 

(2) For every 1 ≤ ℓ ≤ 𝐿, simulate the 𝑥𝑖 users in Π on input 𝑥𝑖 = ℓ, to obtain estimation for the ℓth oordinate



The Local Model of Differential Privacy
Today’s Outline

1. What is the model?

2. Computing histograms

3. Computing averages

4. Clustering

5. LDP vs. statistical queries

6. Impossibility result for histograms

7. Interactive LDP protocols



Summary

Questions?

• LDP provides strong privacy and trust guarantees:

 No individual information is being collected
 Privacy preserved even if the organization is subpoenaed

• Many tasks are compatible with LDP:

 Histograms, Averages, Clustering, …

• Accuracy is generally reduced compared to the centralized model 


