
Differential privacy without a central database
Boston Differential Privacy Summer School, 6-10 June 2022

Uri Stemmer

About this course

• The local model
• The shuffle model
• Streaming/online settings
• Differential privacy as a tool

Last time: Local Differential Privacy

DP

…

C
u
ra
to
r 1527 90

27 …15 90

Dataset Statistics

DP

…

C
u
ra
to
r

7839 4

27 …15 90

Dataset Statistics

DPDP

Post-process

Local ModelCentralized Model • Users retain their data

• Only send randomizations
which are safe for publication

 No need to trust anyone

 Accuracy is reduced

Last time: Local Differential Privacy

DP

…

C
u
ra
to
r 1527 90

27 …15 90

Dataset Statistics

DP

…

C
u
ra
to
r

7839 4

27 …15 90

Dataset Statistics

DPDP

Post-process

Local ModelCentralized Model • Users retain their data

• Only send randomizations
which are safe for publication

 No need to trust anyone

 Accuracy is reduced

The natural question:
Can we get the best of

both worlds?

The Shuffle Model of Differential Privacy
Today’s Outline

1. Secure Multiparty Computation (MPC)

2. What is the shuffle model

3. Counting bits

4. Robustness in the shuffle model

5. Negative result for the shuffle model

6. Interaction

This question makes sense also without DP (and has been studied way before DP…):

Secure Multiparty Computation (MPC) [Yao] [Goldreich, Micali, Wigderson]

Example: The Wedding Problem

This question makes sense also without DP (and has been studied way before DP…):

Secure Multiparty Computation (MPC) [Yao] [Goldreich, Micali, Wigderson]

Example: The Wedding Problem

• Alice and Bob wants to decide whether or not to get married
• Bob doesn’t know what Alice wants, and if she says no he will be embarrassed
• Same with Alice

• Alice and Bob wants to decide whether or not to get married
• Bob doesn’t know what Alice wants, and if she says no he will be embarrassed
• Same with Alice

Goal: Design a process in which Alice and Bob learn if there is mutual love, and nothing else

Notice: If Alice loves Bob then at the end of the process she learns whether Bob loves her or
not. We want that if Alice does not love Bob, then at the end of the process she will not learn
Bob’s answer

This question makes sense also without DP (and has been studied way before DP…):

Secure Multiparty Computation (MPC) [Yao] [Goldreich, Micali, Wigderson]

Example: The Wedding Problem

Here’s what we’ll need:
• A coin
• 6 cards with ones and zeroes: 10 10 10

This question makes sense also without DP (and has been studied way before DP…):

Secure Multiparty Computation (MPC) [Yao] [Goldreich, Micali, Wigderson]

Example: The Wedding Problem

Here’s what we’ll need:
• A coin
• 6 cards with ones and zeroes:

What we are going to do:
• Alice and bob will “shuffle” the cards on the table

(the cards are faced down on the table)
• At the and of the process they will learn if there is mutual love

10 10 10

This question makes sense also without DP (and has been studied way before DP…):

Secure Multiparty Computation (MPC) [Yao] [Goldreich, Micali, Wigderson]

Example: The Wedding Problem

Here’s what we’ll need:
• A coin
• 6 cards with ones and zeroes:

What we are going to do:
• Alice and bob will “shuffle” the cards on the table

(the cards are faced down on the table)
• At the and of the process they will learn if there is mutual love

Notations: ⟹ Encode the answer “no”

⟹ Encode the answer “yes”

10

10 10 10

01

This question makes sense also without DP (and has been studied way before DP…):

Secure Multiparty Computation (MPC) [Yao] [Goldreich, Micali, Wigderson]

Example: The Wedding Problem

Let’s define a “random swap” operation:
• Begin with 6 cards:

• Toss a coin
• Heads we change nothing
• Tails we swap:

EC DB

BF AE

A F

CD

This question makes sense also without DP (and has been studied way before DP…):

Secure Multiparty Computation (MPC) [Yao] [Goldreich, Micali, Wigderson]

Example: The Wedding Problem

𝑏

“no”BobAlice

ത𝑎𝑎 10ത𝑏

𝑏

“no”BobAlice

ത𝑎𝑎 10ത𝑏

ത𝑏𝑏𝑎 10ത𝑎

Change order

𝑏

“no”BobAlice

ത𝑎𝑎 10ത𝑏

ത𝑏𝑏𝑎 10ത𝑎

10ത𝑎 ത𝑏𝑏𝑎

½½

ത𝑏𝑏𝑎 10ത𝑎

Change order

Alice does a Random swap

𝑏

“no”BobAlice

ത𝑎𝑎 10ത𝑏

ത𝑏𝑏𝑎 10ത𝑎

10ത𝑎 ത𝑏𝑏𝑎

½½

0𝑎ത𝑎 ത𝑏𝑏1

ത𝑏𝑏𝑎 10ത𝑎

𝑏ത𝑎𝑎 10ത𝑏

Change order

Alice does a Random swap

𝑏

“no”BobAlice

ത𝑎𝑎 10ത𝑏

ത𝑏𝑏𝑎 10ത𝑎

10ത𝑎 ത𝑏𝑏𝑎

½½

0𝑎ത𝑎 ത𝑏𝑏1

ത𝑏𝑏𝑎 10ത𝑎

𝑏ത𝑎𝑎 10ത𝑏

open
if “yes”
if “no”

open
if “yes”
if “no”

Change order

Alice does a Random swap

𝑏

“no”BobAlice

ത𝑎𝑎 10ത𝑏

ത𝑏𝑏𝑎 10ത𝑎

10ത𝑎 ത𝑏𝑏𝑎

½½

0𝑎ത𝑎 ത𝑏𝑏1

ത𝑏𝑏𝑎 10ത𝑎

𝑏ത𝑎𝑎 10ത𝑏

open
if “yes”
if “no”

open
if “yes”
if “no”

Change order

Alice does a Random swap

• If Alice is a “no” then Bob’s cards are never opened, and Alice learns
nothing

• In Bob’s eyes, Alice’s cards are randomly swapped. If Bob is a “no”
then the other 4 cards are 0101 so it doesn’t matter what we open
and Bob learns nothing

• This is a simple example for secure 2-party computation for the
function AND

Secure Multiparty Computation (MPC)

• Let 𝑓: 𝑋𝑛 → 𝑌 be an 𝑛-input function (possibly randomized)
• 𝑛 players 𝑃1, … , 𝑃𝑛 holding inputs 𝑥1, … , 𝑥𝑛
• The players want to compute 𝑓 𝑥1, … , 𝑥𝑛 without revealing anything more

𝑥1

𝑥2𝑥8

𝑥4𝑥6

𝑥5

𝑥3𝑥7

[Yao] [Goldreich, Micali, Wigderson]

• Let 𝑓: 𝑋𝑛 → 𝑌 be an 𝑛-input function (possibly randomized)
• 𝑛 players 𝑃1, … , 𝑃𝑛 holding inputs 𝑥1, … , 𝑥𝑛
• The players want to compute 𝑓 𝑥1, … , 𝑥𝑛 without revealing anything more

𝑥1

𝑥2𝑥8

𝑥4𝑥6

𝑥5

𝑥3𝑥7

Secure Multiparty Computation (MPC) [Yao] [Goldreich, Micali, Wigderson]

• Let 𝑓: 𝑋𝑛 → 𝑌 be an 𝑛-input function (possibly randomized)
• 𝑛 players 𝑃1, … , 𝑃𝑛 holding inputs 𝑥1, … , 𝑥𝑛
• The players want to compute 𝑓 𝑥1, … , 𝑥𝑛 without revealing anything more

𝑥1

𝑥2𝑥8

𝑥4𝑥6

𝑥5

𝑥3𝑥7

Secure Multiparty Computation (MPC) [Yao] [Goldreich, Micali, Wigderson]

• Let 𝑓: 𝑋𝑛 → 𝑌 be an 𝑛-input function (possibly randomized)
• 𝑛 players 𝑃1, … , 𝑃𝑛 holding inputs 𝑥1, … , 𝑥𝑛
• The players want to compute 𝑓 𝑥1, … , 𝑥𝑛 without revealing anything more

𝑥1

𝑥2𝑥8

𝑥4𝑥6

𝑥5

𝑥3𝑥7

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

Secure Multiparty Computation (MPC) [Yao] [Goldreich, Micali, Wigderson]

• Let 𝑓: 𝑋𝑛 → 𝑌 be an 𝑛-input function (possibly randomized)
• 𝑛 players 𝑃1, … , 𝑃𝑛 holding inputs 𝑥1, … , 𝑥𝑛
• The players want to compute 𝑓 𝑥1, … , 𝑥𝑛 without revealing anything more

𝑥1

𝑥2𝑥8

𝑥4𝑥6

𝑥5

𝑥3𝑥7

𝑥1

𝑥2𝑥8

𝑥4𝑥6

𝑥5

𝑥3𝑥7

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

Secure Multiparty Computation (MPC) [Yao] [Goldreich, Micali, Wigderson]

• Let 𝑓: 𝑋𝑛 → 𝑌 be an 𝑛-input function (possibly randomized)
• 𝑛 players 𝑃1, … , 𝑃𝑛 holding inputs 𝑥1, … , 𝑥𝑛
• The players want to compute 𝑓 𝑥1, … , 𝑥𝑛 without revealing anything more

𝑥1

𝑥2𝑥8

𝑥4𝑥6

𝑥5

𝑥3𝑥7

𝑥1

𝑥2𝑥8

𝑥4𝑥6

𝑥5

𝑥3𝑥7

𝑓
𝑓

𝑓

𝑓
𝑓

𝑓

𝑓

𝑓

Secure Multiparty Computation (MPC) [Yao] [Goldreich, Micali, Wigderson]

• Let 𝑓: 𝑋𝑛 → 𝑌 be an 𝑛-input function (possibly randomized)
• 𝑛 players 𝑃1, … , 𝑃𝑛 holding inputs 𝑥1, … , 𝑥𝑛
• The players want to compute 𝑓 𝑥1, … , 𝑥𝑛 without revealing anything more

• Informally, a protocol for 𝑓 is secure if it emulates the ideal world in the sense that any adversary (controlling
a subset of the parties) cannot learn anything more than what it can learn in the ideal world

• Many different settings: How many parties can the adversary control? Adaptive vs static corruptions? Semi-
honest vs malicious? Poly-time or computationally unbounded adversary? Communication network?

𝑥1

𝑥2𝑥8

𝑥4𝑥6

𝑥5

𝑥3𝑥7

𝑥1

𝑥2𝑥8

𝑥4𝑥6

𝑥5

𝑥3𝑥7

𝑓
𝑓

𝑓

𝑓
𝑓

𝑓

𝑓

𝑓

Secure Multiparty Computation (MPC) [Yao] [Goldreich, Micali, Wigderson]

• Let 𝑓: 𝑋𝑛 → 𝑌 be an 𝑛-input function (possibly randomized)
• 𝑛 players 𝑃1, … , 𝑃𝑛 holding inputs 𝑥1, … , 𝑥𝑛
• The players want to compute 𝑓 𝑥1, … , 𝑥𝑛 without revealing anything more

• Informally, a protocol for 𝑓 is secure if it emulates the ideal world in the sense that any adversary (controlling
a subset of the parties) cannot learn anything more than what it can learn in the ideal world

• Many different settings: How many parties can the adversary control? Adaptive vs static corruptions? Semi-
honest vs malicious? Poly-time or computationally unbounded adversary? Communication network?

Informal theorem: Secure multiparty can be achieved for any function 𝑓 assuming less than a third of the
parties can be corrupted [Goldreich, Micali, Wigderson 87] [Ben-Or, Goldwasser, Wigderson 88]

Remark : This only means that we know HOW to compute 𝑓,
Not that it is necessarily a good idea in terms of privacy…

𝑥1

𝑥2𝑥8

𝑥4𝑥6

𝑥5

𝑥3𝑥7

𝑥1

𝑥2𝑥8

𝑥4𝑥6

𝑥5

𝑥3𝑥7

𝑓
𝑓

𝑓

𝑓
𝑓

𝑓

𝑓

𝑓

Secure Multiparty Computation (MPC) [Yao] [Goldreich, Micali, Wigderson]

The Shuffle Model of Differential Privacy
Today’s Outline

1. Secure Multiparty Computation (MPC)

2. What is the shuffle model

3. Counting bits

4. Robustness in the shuffle model

5. Negative result for the shuffle model

6. Interaction

Back to our context

DP

…

C
u
ra
to
r 1527 90

27 …15 90

Dataset Statistics

DP

…

C
u
ra
to
r

7839 4

27 …15 90

Dataset Statistics

DPDP

Post-process

Local ModelCentralized Model

Back to our context

DP

…

C
u
ra
to
r 1527 90

27 …15 90

Dataset Statistics

DP

…

C
u
ra
to
r

7839 4

27 …15 90

Dataset Statistics

DPDP

Post-process

Local ModelCentralized Model

Applying MPC to a
DP functionality 𝑓 in

the centralized
model, we get
a protocol for
computing 𝑓

without a trusted
entity!

The downside is that generic
MPC constructions are generally
quite complex, requiring several
rounds of communication with
large overhead

DP

…

C
u
ra
to
r 1527 90

27 …15 90

Dataset Statistics

DP

…

C
u
ra
to
r

7839 4

27 …15 90

Dataset Statistics

DPDP

Post-process

Local ModelCentralized Model Shuffle Model

rand

…

C
u
ra
to
r

7632 21

27 …15 90

Dataset Statistics

randrand

Post-process

S
h
u
ff
le

21 7632

Bittau, Erlingsson, Maniatis, Mironov, Raghunathan, Lie, Rudominer, Kode, Tinnes, Seefeld 2017
Erlingsson, Feldman, Mironov, Raghunathan, Talwar, Thakurta 2019

Cheu, Smith, Ullman, Zeber, Zhilyaev 2019
The shuffle model

Shuffle Model

rand

…

C
u
ra
to
r

7632 21

27 …15 90

Dataset Statistics

randrand

Post-process

S
h
u
ff
le

21 7632

Bittau, Erlingsson, Maniatis, Mironov, Raghunathan, Lie, Rudominer, Kode, Tinnes, Seefeld 2017
Erlingsson, Feldman, Mironov, Raghunathan, Talwar, Thakurta 2019

Cheu, Smith, Ullman, Zeber, Zhilyaev 2019
The shuffle model

Definition:

• There are 𝒏 users and a server
• Each user 𝒊 holds an input 𝒙𝒊 ∈ 𝑿
• Each user 𝒊 runs (locally) a randomization algorithm 𝑹 to obtain ℓ

messages: 𝒎𝒊,𝟏, … ,𝒎𝒊,ℓ ← 𝑹 𝒙𝒊
• The users submit these messages to a special communication channel

called shuffle
• At the outcome of the shuffle we get a random permutation of the 𝒏ℓ

messages, denoted as 𝐒𝐡𝐮𝐟𝐟𝐥𝐞 𝒎𝟏,𝟏, … ,𝒎𝟏,ℓ, … ,𝒎𝒏,𝟏, … ,𝒎𝒏,ℓ

• The server post-processes the outcome of the shuffle

Shuffle Model

rand

…

C
u
ra
to
r

7632 21

27 …15 90

Dataset Statistics

randrand

Post-process

S
h
u
ff
le

21 7632

Bittau, Erlingsson, Maniatis, Mironov, Raghunathan, Lie, Rudominer, Kode, Tinnes, Seefeld 2017
Erlingsson, Feldman, Mironov, Raghunathan, Talwar, Thakurta 2019

Cheu, Smith, Ullman, Zeber, Zhilyaev 2019
The shuffle model

Definition:

• There are 𝒏 users and a server
• Each user 𝒊 holds an input 𝒙𝒊 ∈ 𝑿
• Each user 𝒊 runs (locally) a randomization algorithm 𝑹 to obtain ℓ

messages: 𝒎𝒊,𝟏, … ,𝒎𝒊,ℓ ← 𝑹 𝒙𝒊
• The users submit these messages to a special communication channel

called shuffle
• At the outcome of the shuffle we get a random permutation of the 𝒏ℓ

messages, denoted as 𝐒𝐡𝐮𝐟𝐟𝐥𝐞 𝒎𝟏,𝟏, … ,𝒎𝟏,ℓ, … ,𝒎𝒏,𝟏, … ,𝒎𝒏,ℓ

• The server post-processes the outcome of the shuffle

Privacy requirement at the outcome of the shuffle:

For any neighboring datasets 𝒙, 𝒙′ and any event 𝑭 we have

Pr shuffle 𝑅 𝑥1 , … , 𝑅 𝑥𝑛 ∈ 𝐹 ≤ 𝑒𝜀 ⋅ Pr shuffle 𝑅 𝑥1
′ , … , 𝑅 𝑥𝑛

′ ∈ 𝐹 + 𝛿

Shuffle Model

rand

…

C
u
ra
to
r

7632 21

27 …15 90

Dataset Statistics

randrand

Post-process

S
h
u
ff
le

21 7632

Bittau, Erlingsson, Maniatis, Mironov, Raghunathan, Lie, Rudominer, Kode, Tinnes, Seefeld 2017
Erlingsson, Feldman, Mironov, Raghunathan, Talwar, Thakurta 2019

Cheu, Smith, Ullman, Zeber, Zhilyaev 2019
The shuffle model

Definition:

• There are 𝒏 users and a server
• Each user 𝒊 holds an input 𝒙𝒊 ∈ 𝑿
• Each user 𝒊 runs (locally) a randomization algorithm 𝑹 to obtain ℓ

messages: 𝒎𝒊,𝟏, … ,𝒎𝒊,ℓ ← 𝑹 𝒙𝒊
• The users submit these messages to a special communication channel

called shuffle
• At the outcome of the shuffle we get a random permutation of the 𝒏ℓ

messages, denoted as 𝐒𝐡𝐮𝐟𝐟𝐥𝐞 𝒎𝟏,𝟏, … ,𝒎𝟏,ℓ, … ,𝒎𝒏,𝟏, … ,𝒎𝒏,ℓ

• The server post-processes the outcome of the shuffle

Privacy requirement at the outcome of the shuffle:

For any neighboring datasets 𝒙, 𝒙′ and any event 𝑭 we have

Pr shuffle 𝑅 𝑥1 , … , 𝑅 𝑥𝑛 ∈ 𝐹 ≤ 𝑒𝜀 ⋅ Pr shuffle 𝑅 𝑥1
′ , … , 𝑅 𝑥𝑛

′ ∈ 𝐹 + 𝛿

Simple observations: (1) Shuffle model is no stronger than the centralized
model since the curator can simulate it; (2) LDP is no stronger than shuffle

The Shuffle Model of Differential Privacy
Today’s Outline

1. Secure Multiparty Computation (MPC)

2. What is the shuffle model

3. Counting bits

4. Robustness in the shuffle model

5. Negative result for the shuffle model

6. Interaction

Counting bits in the shuffle model

Theorem: Can count bits with error 𝑂
1

𝜀
% Recall the Ω

𝑛

𝜀
error in the local model

% We show only ≈
1

𝜀
log

1

𝛿
and assume for simplicity that 𝑛 ≫

1

𝜀2
ln

1

𝛿

[Cheu, Smith, Ullman, Zeber, Zhilyaev 2019]

Counting bits in the shuffle model

Theorem: Can count bits with error 𝑂
1

𝜀
% Recall the Ω

𝑛

𝜀
error in the local model

% We show only ≈
1

𝜀
log

1

𝛿
and assume for simplicity that 𝑛 ≫

1

𝜀2
ln

1

𝛿

Algorithm 𝑹 (on the users’ side): Input 𝑥 ∈ 0,1

(1) Sample 𝑦 ∼ Bernouli 𝑝 for 𝑝 =
log

1

𝛿

𝜀2⋅𝑛

(2) Return 𝑚1 = 𝑥 , 𝑚2 = 𝑦

Algorithm on the server’s side: Input 𝑏1, … , 𝑏2𝑛 ∈ 0,1

(1) Return σ𝑖=1
2𝑛 𝑏𝑖 − 𝑛𝑝

[Cheu, Smith, Ullman, Zeber, Zhilyaev 2019]

Counting bits in the shuffle model

Theorem: Can count bits with error 𝑂
1

𝜀
% Recall the Ω

𝑛

𝜀
error in the local model

% We show only ≈
1

𝜀
log

1

𝛿
and assume for simplicity that 𝑛 ≫

1

𝜀2
ln

1

𝛿

Utility analysis:

• First observe σ𝑖=1
2𝑛 𝑏𝑖 = σ𝑖=1

𝑛 𝑥𝑖 + σ𝑖=1
𝑛 𝑦𝑖 ≔ σ𝑖=1

𝑛 𝑥𝑖 + 𝑍

• Now, by the Chernoff bound, with high probability we have 𝑍 ≈ 𝑛𝑝 ± 𝑛𝑝

• Which gives us an error of roughly
1

𝜀
log

1

𝛿

Algorithm 𝑹 (on the users’ side): Input 𝑥 ∈ 0,1

(1) Sample 𝑦 ∼ Bernouli 𝑝 for 𝑝 =
log

1

𝛿

𝜀2⋅𝑛

(2) Return 𝑚1 = 𝑥 , 𝑚2 = 𝑦

Algorithm on the server’s side: Input 𝑏1, … , 𝑏2𝑛 ∈ 0,1

(1) Return σ𝑖=1
2𝑛 𝑏𝑖 − 𝑛𝑝

[Cheu, Smith, Ullman, Zeber, Zhilyaev 2019]

Counting bits in the shuffle model

Theorem: Can count bits with error 𝑂
1

𝜀
% Recall the Ω

𝑛

𝜀
error in the local model

% We show only ≈
1

𝜀
log

1

𝛿
and assume for simplicity that 𝑛 ≫

1

𝜀2
ln

1

𝛿

Utility analysis:

• First observe σ𝑖=1
2𝑛 𝑏𝑖 = σ𝑖=1

𝑛 𝑥𝑖 + σ𝑖=1
𝑛 𝑦𝑖 ≔ σ𝑖=1

𝑛 𝑥𝑖 + 𝑍

• Now, by the Chernoff bound, with high probability we have 𝑍 ≈ 𝑛𝑝 ± 𝑛𝑝

• Which gives us an error of roughly
1

𝜀
log

1

𝛿

Privacy Analysis:

• Suffices to show that the sum 𝐵 ≔ σ𝑖=1
2𝑛 𝑏𝑖 satisfies DP, because the outcome of the shuffle is determined

by this (random permutation of 𝐵 ones and 2𝑛 − 𝐵 zeroes)

Algorithm 𝑹 (on the users’ side): Input 𝑥 ∈ 0,1

(1) Sample 𝑦 ∼ Bernouli 𝑝 for 𝑝 =
log

1

𝛿

𝜀2⋅𝑛

(2) Return 𝑚1 = 𝑥 , 𝑚2 = 𝑦

Algorithm on the server’s side: Input 𝑏1, … , 𝑏2𝑛 ∈ 0,1

(1) Return σ𝑖=1
2𝑛 𝑏𝑖 − 𝑛𝑝

[Cheu, Smith, Ullman, Zeber, Zhilyaev 2019]

Counting bits - privacy analysis continued

Algorithm 𝑹 (on the users’ side): Input 𝑥 ∈ 0,1

(1) Sample 𝑦 ∼ Bernouli 𝑝 for 𝑝 =
log

1

𝛿

𝜀2⋅𝑛

(2) Return 𝑚1 = 𝑥 , 𝑚2 = 𝑦

• Suffices to show DP for 𝐵 ≔ σ𝑖=1
2𝑛 𝑏𝑖

• We denote 𝑍 ≔ σ𝑖=1
𝑛 𝑦𝑖

• by Chernoff, whp: 𝑍 ≈ 𝑛𝑝 ± 𝑛𝑝 ≔ 𝐼Good

[Cheu, Smith, Ullman, Zeber, Zhilyaev 2019]

Counting bits - privacy analysis continued

Let 𝒌 ∈ 𝒏𝒑 ± 𝒏𝒑 be a “likely” value for 𝒁. We have

Pr 𝑍 = 𝑘

Pr 𝑍 = 𝑘 − 1
=

𝑛
𝑘

⋅ 𝑝𝑘 ⋅ 1 − 𝑝 𝑛−𝑘

𝑛
𝑘 − 1

⋅ 𝑝𝑘−1 ⋅ 1 − 𝑝 𝑛−𝑘+1
=

𝑛!
𝑘! ⋅ 𝑛 − 𝑘 !

𝑛!
𝑘 − 1 ! ⋅ 𝑛 − 𝑘 + 1 !

⋅
𝑝

1 − 𝑝
=
𝑛 − 𝑘 + 1

𝑘
⋅

𝑝

1 − 𝑝

=
𝑛 − 𝑘 + 1

𝑘
⋅

𝑝𝑛

𝑛 − 𝑝𝑛
=
𝑛 − 𝑘 + 1

𝑛 − 𝑝𝑛
⋅
𝑝𝑛

𝑘
≤ 1 +

𝑛𝑝 + 1

𝑛 − 𝑝𝑛
⋅

𝑝𝑛

𝑝𝑛 − 𝑛𝑝

≲ 1 +
𝑝

𝑛
⋅

1

1 −
1
𝑝𝑛

≈ 1 +
1

𝜀𝑛
⋅

1

1 − 𝜀
≤ 1 + 𝜀 ⋅

1

1 − 𝜀
≲ 𝑒𝜀

Algorithm 𝑹 (on the users’ side): Input 𝑥 ∈ 0,1

(1) Sample 𝑦 ∼ Bernouli 𝑝 for 𝑝 =
log

1

𝛿

𝜀2⋅𝑛

(2) Return 𝑚1 = 𝑥 , 𝑚2 = 𝑦

• Suffices to show DP for 𝐵 ≔ σ𝑖=1
2𝑛 𝑏𝑖

• We denote 𝑍 ≔ σ𝑖=1
𝑛 𝑦𝑖

• by Chernoff, whp: 𝑍 ≈ 𝑛𝑝 ± 𝑛𝑝 ≔ 𝐼Good

[Cheu, Smith, Ullman, Zeber, Zhilyaev 2019]

Counting bits - privacy analysis continued

Let 𝒌 ∈ 𝒏𝒑 ± 𝒏𝒑 be a “likely” value for 𝒁. We have

Pr 𝑍 = 𝑘

Pr 𝑍 = 𝑘 − 1
=

𝑛
𝑘

⋅ 𝑝𝑘 ⋅ 1 − 𝑝 𝑛−𝑘

𝑛
𝑘 − 1

⋅ 𝑝𝑘−1 ⋅ 1 − 𝑝 𝑛−𝑘+1
=

𝑛!
𝑘! ⋅ 𝑛 − 𝑘 !

𝑛!
𝑘 − 1 ! ⋅ 𝑛 − 𝑘 + 1 !

⋅
𝑝

1 − 𝑝
=
𝑛 − 𝑘 + 1

𝑘
⋅

𝑝

1 − 𝑝

=
𝑛 − 𝑘 + 1

𝑘
⋅

𝑝𝑛

𝑛 − 𝑝𝑛
=
𝑛 − 𝑘 + 1

𝑛 − 𝑝𝑛
⋅
𝑝𝑛

𝑘
≤ 1 +

𝑛𝑝 + 1

𝑛 − 𝑝𝑛
⋅

𝑝𝑛

𝑝𝑛 − 𝑛𝑝

≲ 1 +
𝑝

𝑛
⋅

1

1 −
1
𝑝𝑛

≈ 1 +
1

𝜀𝑛
⋅

1

1 − 𝜀
≤ 1 + 𝜀 ⋅

1

1 − 𝜀
≲ 𝑒𝜀

Algorithm 𝑹 (on the users’ side): Input 𝑥 ∈ 0,1

(1) Sample 𝑦 ∼ Bernouli 𝑝 for 𝑝 =
log

1

𝛿

𝜀2⋅𝑛

(2) Return 𝑚1 = 𝑥 , 𝑚2 = 𝑦

• Suffices to show DP for 𝐵 ≔ σ𝑖=1
2𝑛 𝑏𝑖

• We denote 𝑍 ≔ σ𝑖=1
𝑛 𝑦𝑖

• by Chernoff, whp: 𝑍 ≈ 𝑛𝑝 ± 𝑛𝑝 ≔ 𝐼Good

[Cheu, Smith, Ullman, Zeber, Zhilyaev 2019]

[Cheu, Smith, Ullman, Zeber, Zhilyaev 2019]Counting bits - privacy analysis continued

Algorithm 𝑹 (on the users’ side): Input 𝑥 ∈ 0,1

(1) Sample 𝑦 ∼ Bernouli 𝑝 for 𝑝 =
log

1

𝛿

𝜀2⋅𝑛

(2) Return 𝑚1 = 𝑥 , 𝑚2 = 𝑦

• Suffices to show DP for 𝐵 ≔ σ𝑖=1
2𝑛 𝑏𝑖

• We denote 𝑍 ≔ σ𝑖=1
𝑛 𝑦𝑖

• by Chernoff, whp: 𝑍 ≈ 𝑛𝑝 ± 𝑛𝑝 ≔ 𝐼Good

• For 𝑘 ∈ 𝐼Good we have
Pr 𝑍=𝑘

Pr 𝑍=𝑘−1
≤ 𝑒𝜀

Now let 𝑿 be a dataset with 𝒕 ones, let 𝑿′ be a neighboring dataset with 𝒕 + 𝟏 ones, and let 𝑭 ⊆ ℕ

Denote 𝐹−𝑡 = 𝑓 − 𝑡 ∶ 𝑓 ∈ 𝐹 . We have,

Pr
𝐵 ∈ 𝐹
run on 𝑋

= Pr 𝑡 + 𝑍 ∈ 𝐹 = Pr 𝑍 ∈ 𝐹−𝑡 = Pr 𝑍 ∈ 𝐹−𝑡 ∩ 𝐼Good + Pr 𝑍 ∈ 𝐹−𝑡 ∖ 𝐼Good

≤ Pr 𝑍 ∈ 𝐹−𝑡 ∩ 𝐼Good + 𝛿 ≤ 𝑒𝜀 ⋅ Pr 𝑍 + 1 ∈ 𝐹−𝑡 ∩ 𝐼Good + 𝛿

≤ 𝑒𝜀 ⋅ Pr 𝑍 + 1 ∈ 𝐹−𝑡 + 𝛿 = 𝑒𝜀 ⋅ Pr 𝑍 + 1 + 𝑡 ∈ 𝐹 + 𝛿 ≤ 𝑒𝜀 ⋅ Pr
𝐵 ∈ 𝐹

run on 𝑋′
+ 𝛿

[Cheu, Smith, Ullman, Zeber, Zhilyaev 2019]Counting bits - privacy analysis continued

Algorithm 𝑹 (on the users’ side): Input 𝑥 ∈ 0,1

(1) Sample 𝑦 ∼ Bernouli 𝑝 for 𝑝 =
log

1

𝛿

𝜀2⋅𝑛

(2) Return 𝑚1 = 𝑥 , 𝑚2 = 𝑦

• Suffices to show DP for 𝐵 ≔ σ𝑖=1
2𝑛 𝑏𝑖

• We denote 𝑍 ≔ σ𝑖=1
𝑛 𝑦𝑖

• by Chernoff, whp: 𝑍 ≈ 𝑛𝑝 ± 𝑛𝑝 ≔ 𝐼Good

• For 𝑘 ∈ 𝐼Good we have
Pr 𝑍=𝑘

Pr 𝑍=𝑘−1
≤ 𝑒𝜀

Now let 𝑿 be a dataset with 𝒕 ones, let 𝑿′ be a neighboring dataset with 𝒕 + 𝟏 ones, and let 𝑭 ⊆ ℕ

Denote 𝐹−𝑡 = 𝑓 − 𝑡 ∶ 𝑓 ∈ 𝐹 . We have,

Pr
𝐵 ∈ 𝐹
run on 𝑋

= Pr 𝑡 + 𝑍 ∈ 𝐹 = Pr 𝑍 ∈ 𝐹−𝑡 = Pr 𝑍 ∈ 𝐹−𝑡 ∩ 𝐼Good + Pr 𝑍 ∈ 𝐹−𝑡 ∖ 𝐼Good

≤ Pr 𝑍 ∈ 𝐹−𝑡 ∩ 𝐼Good + 𝛿 ≤ 𝑒𝜀 ⋅ Pr 𝑍 + 1 ∈ 𝐹−𝑡 ∩ 𝐼Good + 𝛿

≤ 𝑒𝜀 ⋅ Pr 𝑍 + 1 ∈ 𝐹−𝑡 + 𝛿 = 𝑒𝜀 ⋅ Pr 𝑍 + 1 + 𝑡 ∈ 𝐹 + 𝛿 ≤ 𝑒𝜀 ⋅ Pr
𝐵 ∈ 𝐹

run on 𝑋′
+ 𝛿

[Cheu, Smith, Ullman, Zeber, Zhilyaev 2019]Counting bits - privacy analysis continued

Algorithm 𝑹 (on the users’ side): Input 𝑥 ∈ 0,1

(1) Sample 𝑦 ∼ Bernouli 𝑝 for 𝑝 =
log

1

𝛿

𝜀2⋅𝑛

(2) Return 𝑚1 = 𝑥 , 𝑚2 = 𝑦

• Suffices to show DP for 𝐵 ≔ σ𝑖=1
2𝑛 𝑏𝑖

• We denote 𝑍 ≔ σ𝑖=1
𝑛 𝑦𝑖

• by Chernoff, whp: 𝑍 ≈ 𝑛𝑝 ± 𝑛𝑝 ≔ 𝐼Good

• For 𝑘 ∈ 𝐼Good we have
Pr 𝑍=𝑘

Pr 𝑍=𝑘−1
≤ 𝑒𝜀

The Shuffle Model of Differential Privacy
Today’s Outline

1. Secure Multiparty Computation (MPC)

2. What is the shuffle model

3. Counting bits

4. Robustness in the shuffle model

5. Negative result for the shuffle model

6. Interaction

The Robust Shuffle Model

• The protocol we saw for counting bits has nice feature: It is resilient to dropouts
• Specifically, privacy is still preserved if a constant fraction of the users (say half) do not

submit messages to the shuffle

[Balcer, Cheu, Joseph, Mao]

The Robust Shuffle Model

• The protocol we saw for counting bits has nice feature: It is resilient to dropouts
• Specifically, privacy is still preserved if a constant fraction of the users (say half) do not

submit messages to the shuffle

Recall the privacy requirement we had before:

For any neighboring datasets 𝒙, 𝒙′ and any event 𝑭 we have

Pr shuffle 𝑅 𝑥1 , … , 𝑅 𝑥𝑛 ∈ 𝐹 ≤ 𝑒𝜀 ⋅ Pr shuffle 𝑅 𝑥1
′ , … , 𝑅 𝑥𝑛

′ ∈ 𝐹 + 𝛿

[Balcer, Cheu, Joseph, Mao]

The Robust Shuffle Model

• The protocol we saw for counting bits has nice feature: It is resilient to dropouts
• Specifically, privacy is still preserved if a constant fraction of the users (say half) do not

submit messages to the shuffle

Recall the privacy requirement we had before:

For any neighboring datasets 𝒙, 𝒙′ and any event 𝑭 we have

Pr shuffle 𝑅 𝑥1 , … , 𝑅 𝑥𝑛 ∈ 𝐹 ≤ 𝑒𝜀 ⋅ Pr shuffle 𝑅 𝑥1
′ , … , 𝑅 𝑥𝑛

′ ∈ 𝐹 + 𝛿

Simple example of a bad protocol:

[Balcer, Cheu, Joseph, Mao]

Algorithm 𝑹 for user 1: Input 𝑥 ∈ 0,1

(1) Sample 𝑦1, 𝑦2, … , 𝑦𝑛 ∼ Bernouli 𝑝 for 𝑝 =
log

1

𝛿

𝜀2⋅𝑛

(2) Return 𝑚1 = 𝑥 , 𝑚2 = 𝑦1 , … , 𝑚𝑛+1 = 𝑦𝑛

Algorithm on the server’s side: Input 𝑏1, … , 𝑏2𝑛 ∈ 0,1

(1) Return σ𝑖=1
2𝑛 𝑏𝑖 − 𝑛𝑝

Algorithm 𝑹 for users 2-n: Input 𝑥 ∈ 0,1
(1) Return 𝑚1 = 𝑥

The Robust Shuffle Model

• The protocol we saw for counting bits has nice feature: It is resilient to dropouts
• Specifically, privacy is still preserved if a constant fraction of the users (say half) do not

submit messages to the shuffle

Recall the privacy requirement we had before:

For any neighboring datasets 𝒙, 𝒙′ and any event 𝑭 we have

Pr shuffle 𝑅 𝑥1 , … , 𝑅 𝑥𝑛 ∈ 𝐹 ≤ 𝑒𝜀 ⋅ Pr shuffle 𝑅 𝑥1
′ , … , 𝑅 𝑥𝑛

′ ∈ 𝐹 + 𝛿

[Balcer, Cheu, Joseph, Mao]

The Robust Shuffle Model

• The protocol we saw for counting bits has nice feature: It is resilient to dropouts
• Specifically, privacy is still preserved if a constant fraction of the users (say half) do not

submit messages to the shuffle

Recall the privacy requirement we had before:

For any neighboring datasets 𝒙, 𝒙′ and any event 𝑭 we have

Pr shuffle 𝑅 𝑥1 , … , 𝑅 𝑥𝑛 ∈ 𝐹 ≤ 𝑒𝜀 ⋅ Pr shuffle 𝑅 𝑥1
′ , … , 𝑅 𝑥𝑛

′ ∈ 𝐹 + 𝛿

A modified privacy definition – the robust shuffle model:

For any neighboring datasets 𝒙, 𝒙′, event 𝑭, and set of induces {𝒋𝟏, 𝒋𝟐, … , 𝒋𝒘} of size 𝒘 ≥
𝒏

𝟐

Pr shuffle 𝑅 𝑥𝑗1 , … , 𝑅 𝑥𝑗𝑤 ∈ 𝐹 ≤ 𝑒𝜀 ⋅ Pr shuffle 𝑅 𝑥𝑗1
′ , … , 𝑅 𝑥𝑗𝑤

′ ∈ 𝐹 + 𝛿

[Balcer, Cheu, Joseph, Mao]

The Shuffle Model of Differential Privacy
Today’s Outline

1. Secure Multiparty Computation (MPC)

2. What is the shuffle model

3. Counting bits

4. Robustness in the shuffle model

5. Negative result for the shuffle model

6. Interaction

Negative result for the shuffle model

The XOR-sum problem:
• The input of every user 𝑖 is a pair 𝑗𝑖 , 𝑏𝑖 ∈ 1,2,… , 𝑛 × 0,1
• The goal: estimate

෍

𝑗=1

𝑛

ໄ

𝑖:𝑗𝑖=𝑗

𝑏𝑖

Example: if the inputs are 1,1 , 1,0 , 3,0 , 1,1 , 3,0 , 2,1 , 4,1
Then the goal is to estimate 1⊕ 0⊕ 1 + 1 + 0⊕ 0 + 1 = 2

[Balcer, Cheu, Joseph, Mao]

Negative result for the shuffle model

The XOR-sum problem:
• The input of every user 𝑖 is a pair 𝑗𝑖 , 𝑏𝑖 ∈ 1,2,… , 𝑛 × 0,1
• The goal: estimate

෍

𝑗=1

𝑛

ໄ

𝑖:𝑗𝑖=𝑗

𝑏𝑖

Example: if the inputs are 1,1 , 1,0 , 3,0 , 1,1 , 3,0 , 2,1 , 4,1
Then the goal is to estimate 1⊕ 0⊕ 1 + 1 + 0⊕ 0 + 1 = 2

Observe: Removing one person’s data changes this quantity by ±1 and so this can be

estimated with error ≈
1

𝜀
in the centralized model

Informal theorem: Any robust-shuffle protocol for this problem must have error Ω 𝑛

[Balcer, Cheu, Joseph, Mao]

Proof idea:
• Suppose there is a robust-shuffle algorithm 𝑅,𝒜 , where 𝑅 is the randomizer applied by the

users and 𝒜 is the post-processing algorithm after the shuffle (on the server’s side)

• Let 𝑋 = 𝑥1, … , 𝑥𝑛/2 ∈ 0,1 𝑛/2 be an input dataset

• We can use 𝑅,𝒜 to answer many “Hamming distance queries” w.r.t. 𝑋 of the form:

Given 𝒀 ∈ 𝟎, 𝟏 𝒏/𝟐 approximate 𝒙𝟏 ⊕𝒚𝟏 +⋯+ 𝒙𝒏/𝟐 ⊕𝒚𝒏/𝟐

Negative result for the shuffle model [Balcer, Cheu, Joseph, Mao]

Proof idea:
• Suppose there is a robust-shuffle algorithm 𝑅,𝒜 , where 𝑅 is the randomizer applied by the

users and 𝒜 is the post-processing algorithm after the shuffle (on the server’s side)

• Let 𝑋 = 𝑥1, … , 𝑥𝑛/2 ∈ 0,1 𝑛/2 be an input dataset

• We can use 𝑅,𝒜 to answer many “Hamming distance queries” w.r.t. 𝑋 of the form:

Given 𝒀 ∈ 𝟎, 𝟏 𝒏/𝟐 approximate 𝒙𝟏 ⊕𝒚𝟏 +⋯+ 𝒙𝒏/𝟐 ⊕𝒚𝒏/𝟐

• Step 2 is just a post-processing of the output of step 1 and hence the algorithm remains
private regardless of how many queries we answer in Step 2

• Answering “too many” queries with “too much” accuracy is impossible…

1) Output G ← Shuffle 𝑅 1, 𝑥1 , … , 𝑅
𝑛

2
, 𝑥𝑛/2 % by assumption, 𝐺 is safe for publication

2) Given a query 𝑌 = 𝑦1, … , 𝑦𝑛/2 ∈ 0,1 𝑛/2 respond with

𝒜 Shuffle 𝐺, 𝑅 1, 𝑦1 , … , 𝑅 𝑛/2, 𝑦𝑛/2

Negative result for the shuffle model [Balcer, Cheu, Joseph, Mao]

The Shuffle Model of Differential Privacy
Today’s Outline

1. Secure Multiparty Computation (MPC)

2. What is the shuffle model

3. Counting bits

4. Robustness in the shuffle model

5. Negative result for the shuffle model

6. Interaction

Interaction in the shuffle model
• The negative result for XOR-sum strongly relied on the protocol being non-interactive
• This allowed us to “pause” the computation mid-way and continue arbitrarily
• Does not work with interactive protocols

Interaction in the shuffle model
• The negative result for XOR-sum strongly relied on the protocol being non-interactive
• This allowed us to “pause” the computation mid-way and continue arbitrarily
• Does not work with interactive protocols

Informal theorem: Every randomized functionality can be
computed in the shuffle model with merely two rounds

Interaction in the shuffle model
• The negative result for XOR-sum strongly relied on the protocol being non-interactive
• This allowed us to “pause” the computation mid-way and continue arbitrarily
• Does not work with interactive protocols

Key Exchange: Definition

• User 𝒊 and user 𝒋 send messages to the shuffle

• All users see the shuffled messages

• User 𝒊 and user 𝒋 agree on a key

• All other users together get no information on the key 32 21

…

randrand

S
h
u
ff
le

21 32

Informal theorem: Every randomized functionality can be
computed in the shuffle model with merely two rounds

Agreeing on one bit

• User 𝒊 chooses a random bit 𝒂, sends it to the shuffle
• User 𝒋 chooses a random bit 𝒃, sends it to the shuffle
• If 𝒂 ≠ 𝒃 the common key is 𝒂, otherwise protocol fails

[IKOS‘06]

Interaction in the shuffle model

Agreeing on one bit

• User 𝒊 knows 𝒂. User 𝒋 that knows 𝒃 and sees output of shuffle learns 𝒂

• All users see 𝒂, 𝒃 with prob. ½ and 𝒃, 𝒂 with prob. ½

– All other users get no info. on 𝒂

• Users 𝒊, 𝒋 agree on a key with prob. ½

• User 𝒊 chooses a random bit 𝒂, sends it to the shuffle
• User 𝒋 chooses a random bit 𝒃, sends it to the shuffle
• If 𝒂 ≠ 𝒃 the common key is 𝒂, otherwise protocol fails

[IKOS‘06]

Interaction in the shuffle model

Agreeing on one bit

• User 𝒊 knows 𝒂. User 𝒋 that knows 𝒃 and sees output of shuffle learns 𝒂

• All users see 𝒂, 𝒃 with prob. ½ and 𝒃, 𝒂 with prob. ½

– All other users get no info. on 𝒂

• Users 𝒊, 𝒋 agree on a key with prob. ½

• User 𝒊 chooses a random bit 𝒂, sends it to the shuffle
• User 𝒋 chooses a random bit 𝒃, sends it to the shuffle
• If 𝒂 ≠ 𝒃 the common key is 𝒂, otherwise protocol fails

• User 𝒊 chooses 𝟑𝒌 random bits 𝒂𝟏, … , 𝒂𝟑𝒌, sends (𝟏, 𝒂𝟏), … , (𝟑𝒌, 𝒂𝟑𝒌) to the shuffle
• User 𝒋 chooses 𝟑𝒌 random bits 𝒃𝟏, … , 𝒃𝟑𝒌, sends (𝟏, 𝒃𝟏), … , (𝟑𝒌, 𝒃𝟑𝒌) to the shuffle
• Let 𝑰 be the first 𝒌 indices s.t. 𝒂𝒊 ≠ 𝒃𝒊; the common key is 𝒂𝒊 𝒊∈𝑰

• Users 𝒊, 𝒋 agree on a secret 𝒌-bit key with prob. 𝟏 − 𝟐−𝑶(𝒌)

[IKOS‘06]

Agreeing on k bits

Interaction in the shuffle model

Agreeing on one bit

• User 𝒊 knows 𝒂. User 𝒋 that knows 𝒃 and sees output of shuffle learns 𝒂

• All users see 𝒂, 𝒃 with prob. ½ and 𝒃, 𝒂 with prob. ½

– All other users get no info. on 𝒂

• Users 𝒊, 𝒋 agree on a key with prob. ½

• User 𝒊 chooses a random bit 𝒂, sends it to the shuffle
• User 𝒋 chooses a random bit 𝒃, sends it to the shuffle
• If 𝒂 ≠ 𝒃 the common key is 𝒂, otherwise protocol fails

• User 𝒊 chooses 𝟑𝒌 random bits 𝒂𝟏, … , 𝒂𝟑𝒌, sends (𝟏, 𝒂𝟏), … , (𝟑𝒌, 𝒂𝟑𝒌) to the shuffle
• User 𝒋 chooses 𝟑𝒌 random bits 𝒃𝟏, … , 𝒃𝟑𝒌, sends (𝟏, 𝒃𝟏), … , (𝟑𝒌, 𝒃𝟑𝒌) to the shuffle
• Let 𝑰 be the first 𝒌 indices s.t. 𝒂𝒊 ≠ 𝒃𝒊; the common key is 𝒂𝒊 𝒊∈𝑰

• Users 𝒊, 𝒋 agree on a secret 𝒌-bit key with prob. 𝟏 − 𝟐−𝑶(𝒌)

[IKOS‘06]

Agreeing on k bits

Theorem: With the addition of one round (for setting private channels) general MPC
can be implemented in the shuffle model

* additional round can be avoided in some cases

Interaction in the shuffle model

The Shuffle Model of Differential Privacy
Today’s Outline

1. Secure Multiparty Computation (MPC)

2. What is the shuffle model

3. Counting bits

4. Robustness in the shuffle model

5. Negative result for the shuffle model

6. Interaction

