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About this course

• The local model
• The shuffle model
• Streaming/online settings
• Differential privacy as a tool



Streaming/online settings
Today’s Outline

1. Private streaming algorithms

2. Privacy under continual observation
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What is Streaming?

• A stream of length 𝒏 over domain 𝑿 is a sequence of updates 𝒙𝟏, … , 𝒙𝒏 where 𝒙𝒊 ∈ 𝑿

• Let 𝒈:𝑿∗ → 𝑹 be a function

• At every time 𝒊 ∈ 𝒏 we obtain 𝒙𝒊
• At the end of the stream we need to output 𝒛 ≈ 𝒈 𝒙𝟏, … , 𝒙𝒏
• Requirement: small space
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• A stream of length 𝒏 over domain 𝑿 is a sequence of updates 𝒙𝟏, … , 𝒙𝒏 where 𝒙𝒊 ∈ 𝑿

• Let 𝒈:𝑿∗ → 𝑹 be a function

• At every time 𝒊 ∈ 𝒏 we obtain 𝒙𝒊
• At the end of the stream we need to output 𝒛 ≈ 𝒈 𝒙𝟏, … , 𝒙𝒏
• Requirement: small space

• What does it mean for a streaming algorithm to be DP?

 A streaming algorithm 𝒜 is 𝜀, 𝛿 -DP if for any two neighboring streams Ԧ𝑥 = 𝑥1, … , 𝑥𝑛 and Ԧ𝑥′

= 𝑥1
′ , … , 𝑥𝑛

′ that differ on one update we have that 𝒜 Ԧ𝑥 ≈ 𝜀,𝛿 𝒜 𝑥′
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• So no need for composition and privacy follows from 𝓐

Utility analysis:

• Since we aim for relative error, the error do not accumulate
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Privacy analysis:

• We apply 𝓐 on disjoint portions of the input
• So no need for composition and privacy follows from 𝓐

Utility analysis:
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• The point here is that our space does not depend directly on the length of the stream 𝒏
• Our space equals to the space of the sanitizer 𝓐, which is independent of 𝒏, and the 
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Example where this is useful: Quantile estimation

• Items in the stream are numbers 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 ∈ 𝟎, 𝟏
• The goal is, at the end of the stream, to get approximations for all quantiles of the data
• E.g., at the end of the stream we want to learn 9 numbers 𝒚𝟏, 𝒚𝟐, … , 𝒚𝟗 ∈ 𝟎, 𝟏 such that

for every ℓ we have 𝒊: 𝒚ℓ ≤ 𝒙𝒊 ≤ 𝒚ℓ+𝟏 ≈
𝒏

𝟏𝟎

(this works well because we have very efficient “offline sanitizers” for this problem)



Morris 78The Counter Problem
Updates are bits and we want to estimate their sum

• Simple solution: Store the sum in memory using log 𝑛 bits
• Can we maintain a counter using smaller space?



― Initialize estimate ෡𝑪 = 𝟎
― Given an update 𝒙𝒊 = 𝟏 flip a coin and increment ෡𝑪 only if coin is heads

Morris 78The Counter Problem

• We expect that ෡𝑪 ≈ 𝑪/𝟐 where 𝑪 is the true value
• The good: We still know 𝑪 (approximately) while storing only a smaller number
• The bad: We saved only 1 bit (and also this has large variance, but let’s ignore it…)

Updates are bits and we want to estimate their sum

• Simple solution: Store the sum in memory using log 𝑛 bits
• Can we maintain a counter using smaller space?

Step 1:
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― Given an update 𝒙𝒊 = 𝟏 flip ෡𝑪 coins and increment ෡𝑪 only if all coin are heads

• Can show that in expectation ෡𝑪 ≈ 𝐥𝐨𝐠𝑪
• Thus if 𝑪 takes 𝐥𝐨𝐠𝒏 then ෡𝑪 takes ≈ 𝐥𝐨𝐠 𝐥𝐨𝐠𝒏 bits
• So we gained exponentially in storage! (again, let’s ignore the variance…)
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• We expect that ෡𝑪 ≈ 𝑪/𝟐 where 𝑪 is the true value
• The good: We still know 𝑪 (approximately) while storing only a smaller number
• The bad: We saved only 1 bit (and also this has large variance, but let’s ignore it…)
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• Can show that in expectation ෡𝑪 ≈ 𝐥𝐨𝐠𝑪
• Thus if 𝑪 takes 𝐥𝐨𝐠𝒏 then ෡𝑪 takes ≈ 𝐥𝐨𝐠 𝐥𝐨𝐠𝒏 bits
• So we gained exponentially in storage! (again, let’s ignore the variance…)

Observe: The outcome distribution of the algorithm depends only on 𝑪

Updates are bits and we want to estimate their sum

• Simple solution: Store the sum in memory using log 𝑛 bits
• Can we maintain a counter using smaller space?

Step 1:

Step 2:



A Private Algorithm for the Counter Problem

• We can design a private variant as follows (informal):

― Sample 𝒀 ∼ 𝐋𝐚𝐩
𝟏

𝜺

― Run Morris’ counter on a modified stream:
 If 𝒀 < 𝟎 then ignore the first 𝒀 ones in the stream
 If 𝒀 ≥ 𝟎 then add 𝒀 ones before the stream begins

― The outcome distribution if a function of 𝑪 + 𝒀 , satisfying privacy by post-processing

[Dwork, Naor, Pitassi, Rothblum, Yekhanin]



• We can design a private variant as follows (informal):

• This idea is useful for other streaming problems

 Example in the context of the counter problem: Counting the number of people who viewed my 
YouTube video

― Sample 𝒀 ∼ 𝐋𝐚𝐩
𝟏

𝜺

― Run Morris’ counter on a modified stream:
 If 𝒀 < 𝟎 then ignore the first 𝒀 ones in the stream
 If 𝒀 ≥ 𝟎 then add 𝒀 ones before the stream begins

― The outcome distribution if a function of 𝑪 + 𝒀 , satisfying privacy by post-processing

A Private Algorithm for the Counter Problem
[Dwork, Naor, Pitassi, Rothblum, Yekhanin]
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1. Private streaming algorithms

2. Privacy under continual observation



Modified problem – Counter with continual reports:
• On every time 𝒕 ∈ 𝒏

―We get a bit 𝒙𝒕 ∈ 𝟎, 𝟏
―Need to respond with an approximation ො𝒄𝒊 for 𝒄𝒊 = σ𝒊=𝟏

𝒕 𝒙𝒊

Private counter under continual observation
[Dwork, Naor,  Pitassi, Rothblum]



Modified problem – Counter with continual reports:
• On every time 𝒕 ∈ 𝒏

―We get a bit 𝒙𝒕 ∈ 𝟎, 𝟏
―Need to respond with an approximation ො𝒄𝒊 for 𝒄𝒊 = σ𝒊=𝟏

𝒕 𝒙𝒊

Algorithm 𝒜 is 𝜀, 𝛿 -DP for this problem if for any two neighboring streams Ԧ𝑥
= 𝑥1, … , 𝑥𝑛 and Ԧ𝑥′ = 𝑥1

′ , … , 𝑥𝑛
′ that differ on one update we have that 

𝒜 𝑢 ≈ 𝜀,𝛿 𝒜 𝑢′

Remarks:
• Observe that now 𝒜 Ԧ𝑥 is a vector of length 𝑚
• This problem is interesting regardless of space, so let’s forget about space from now on
• Sanity check: Is the previous algorithm private w.r.t. this definition?

Private counter under continual observation
[Dwork, Naor,  Pitassi, Rothblum]



Naïve attempts at solving the problem:

1) “LDP style”: Every time 𝒕 ∈ 𝒏 we release ෝ𝒙𝒕 = 𝒙𝒕 + 𝐋𝐚𝐩
𝟏

𝜺

―This would maintain privacy, but sum of 𝒏 noises accumulates to ≈ 𝒏/𝜺

2) Using composition: Every time 𝒕 ∈ 𝒏 we release ො𝒄𝒕 = σ𝒊=𝟏
𝒕 𝒙𝒕 + 𝐋𝐚𝐩 𝒃

―We would need 𝒃 ≈ 𝒏/𝜺 due to composition
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𝟏

𝜺

―This would maintain privacy, but sum of 𝒏 noises accumulates to ≈ 𝒏/𝜺

2) Using composition: Every time 𝒕 ∈ 𝒏 we release ො𝒄𝒕 = σ𝒊=𝟏
𝒕 𝒙𝒕 + 𝐋𝐚𝐩 𝒃

―We would need 𝒃 ≈ 𝒏/𝜺 due to composition

How can we do better?
• Observe: in solution (1) every user affects only one computation, so no need for 

composition, but the noises accumulate. In solution (2) we do not accumulate noises, 
but each one must be big to account for composition over 𝒏 computations

• We want something in between
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1) Define a binary tree whose leaves correspond to time steps 𝟏, 𝟐, 𝟑, … , 𝒏

2) We initialize every node with independent random noise from 𝐋𝐚𝐩
𝐥𝐨𝐠 𝒏

𝜺

3) In time 𝒕 we get 𝒙𝒕 and add it to all the nodes along the path from leaf 𝒕 till the root
4) When a subtree is “full” we release the content of its root

time
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𝐥𝐨𝐠 𝒏

𝜺
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1) Define a binary tree whose leaves correspond to time steps 𝟏, 𝟐, 𝟑, … , 𝒏

2) We initialize every node with independent random noise from 𝐋𝐚𝐩
𝐥𝐨𝐠 𝒏

𝜺

3) In time 𝒕 we get 𝒙𝒕 and add it to all the nodes along the path from leaf 𝒕 till the root
4) When a subtree is “full” we release the content of its root

Privacy analysis:
• Once a subtree is “full” then its root is never updated again
• Thus, we release the content of every node exactly once after adding Laplace noise

• Changing one 𝒙𝒕 affects only log𝑚 of these noise, so noise 
𝐥𝐨𝐠 𝒏

𝜺
suffices “by 

composition”
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Privacy analysis:
• Once a subtree is “full” then its root is never updated again
• Thus, we release the content of every node exactly once after adding Laplace noise

• Changing one 𝒙𝒕 affects only log𝑚 of these noise, so noise 
𝐥𝐨𝐠 𝒏

𝜺
suffices “by 

composition”

Utility analysis:
• At any time 𝒕 we can compute an estimated counter by summing at most 𝐥𝐨𝐠𝒏 nodes
• So we are only summing 𝐥𝐨𝐠𝒏 noises, each of magnitude ≈ 𝐥𝐨𝐠𝒏

• Overall error is 
𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝒏

𝜺
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Thm: Every 𝟏, 𝟎 -DP algorithm for this problem must have error 𝛀 𝐥𝐨𝐠𝒏
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Thm: Every 𝟏, 𝟎 -DP algorithm for this problem must have error 𝛀 𝐥𝐨𝐠𝒏

• Suppose there is a private algorithm 𝓐 such that w.p. 𝟐/𝟑 all of its estimates are accurate to within error 
log 𝑛

16
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• Suppose there is a private algorithm 𝓐 such that w.p. 𝟐/𝟑 all of its estimates are accurate to within error 
log 𝑛

16

• Construct a collection 𝑯 = 𝒙 𝟏 , 𝒙
𝐥𝐨𝐠 𝒏

𝟒 , … of input sequences where 𝒙 𝒊 = 𝟎, 𝟎,… , 𝟎, 𝟏, 𝟏, 𝟏, … , 𝟏
𝐥𝐨𝐠 𝒏

𝟒
𝐨𝐧𝐞𝐬 𝐟𝐫𝐨𝐦 𝐭𝐢𝐦𝐞 𝒊

, 𝟎, … , 𝟎
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Thm: Every 𝟏, 𝟎 -DP algorithm for this problem must have error 𝛀 𝐥𝐨𝐠𝒏

• Suppose there is a private algorithm 𝓐 such that w.p. 𝟐/𝟑 all of its estimates are accurate to within error 
log 𝑛

16

• Construct a collection 𝑯 = 𝒙 𝟏 , 𝒙
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𝟒 , … of input sequences where 𝒙 𝒊 = 𝟎, 𝟎,… , 𝟎, 𝟏, 𝟏, 𝟏, … , 𝟏
𝐥𝐨𝐠 𝒏

𝟒
𝐨𝐧𝐞𝐬 𝐟𝐫𝐨𝐦 𝐭𝐢𝐦𝐞 𝒊

, 𝟎, … , 𝟎

• The algorithm has error at most 
𝐥𝐨𝐠 𝒏

𝟏𝟔
so if we run it on input 𝒙 𝒊 then:

― Before time 𝒊 the estimation must be at most 
𝐥𝐨𝐠 𝒏

𝟏𝟔

― After time 𝒊 +
𝐥𝐨𝐠 𝒏

𝟒
the estimation must be at least 

𝟑 𝐥𝐨𝐠 𝒏

𝟏𝟔

• Hence, a sequence of answers cannot by good for more than one 𝒙 𝒊
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2

3
≤ Pr

𝒜 Ԧ𝑥 𝑖 returns

good answers

for Ԧ𝑥 𝑖

≤ 𝑒2
log 𝑛
4 ⋅ Pr

𝒜 Ԧ𝑥 ℓ returns

good answers

for Ԧ𝑥 𝑖

= 𝑛 ⋅ Pr
𝒜 Ԧ𝑥 ℓ returns

good answers

for Ԧ𝑥 𝑖
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• Suppose there is a private algorithm 𝓐 such that w.p. 𝟐/𝟑 all of its estimates are accurate to within error 
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𝐥𝐨𝐠 𝒏

𝟏𝟔
so if we run it on input 𝒙 𝒊 then:
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• Hence, a sequence of answers cannot by good for more than one 𝒙 𝒊 and for every 𝒊 ≠ ℓ we have
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Negative result for continual observation

Recall the XOR-sum problem:
• The input of every user 𝑖 is a pair 𝑗𝑖 , 𝑏𝑖 ∈ 1,2,… , 𝑛 × 0,1
• The goal: estimate  σ𝑗=1

𝑛 ۩𝑖:𝑗𝑖=𝑗
𝑏𝑖

[Jain, Raskhodnikova, Sivakumar, Smith 2021]
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As we mentioned: Can be solved with error ≈
1

𝜀
in the centralized model

Informal theorem: Any continual-DP algorithm for this problem must have error Ω poly 𝑛

Proof:
• An algorithm 𝓐 for this problem can be used to answer many “Hamming distance queries”; contradiction…

• Specifically, given input dataset 𝑿 = 𝒙𝟏, … , 𝒙 𝒏 , feed 𝟏, 𝒙𝟏 , … , 𝒏, 𝒙 𝒏 to algorithm 𝓐

• Then, given a query 𝒀 = 𝒚𝟏, … , 𝒚 𝒏 :

• Feed 𝟏, 𝒚𝟏 , … , 𝒏, 𝒚 𝒏 to algorithm 𝓐 to obtain an answer 𝒛

• Feed 𝟏, 𝒚𝟏 , … , 𝒏, 𝒚 𝒏 to algorithm 𝓐 again 

• After ≈ 𝒏 queries (total input length 𝒏) we can reconstruct 𝑿 contradicting the privacy of 𝓐

[Jain, Raskhodnikova, Sivakumar, Smith 2021]
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