
Differential privacy without a central database
Boston Differential Privacy Summer School, 6-10 June 2022

Uri Stemmer

About this course

• The local model
• The shuffle model
• Streaming/online settings
• Differential privacy as a tool

Differential privacy as a tool
Today’s Outline

1. DP is the enemy of overfitting

2. Application to answering adaptive queries

3. Application to adaptive streaming

Find the next number of the sequence

1, 3, 5, 7, ?

Find the next number of the sequence

1, 3, 5, 7, ?

Correct solution

217341

Because when

𝑓 𝑥 =
18111

2
𝑥4 − 90555 𝑥3 +

633885

2
𝑥2 − 452773 𝑥 + 217331

𝑓 1 = 1
𝑓 2 = 3
𝑓 3 = 5
𝑓 4 = 7

𝑓 5 = 217341

Find the next number of the sequence

1, 3, 5, 7, ?

Correct solution

217341

Because when

𝑓 𝑥 =
18111

2
𝑥4 − 90555 𝑥3 +

633885

2
𝑥2 − 452773 𝑥 + 217331

𝑓 1 = 1
𝑓 2 = 3
𝑓 3 = 5
𝑓 4 = 7

𝑓 5 = 217341

Find the next number of the sequence

1, 3, 5, 7, ?

Correct solution

217341

The Generalization Properties of DP (“anti overfitting”)

Warmup 1:

• Let 𝕯 be a distribution over a domain 𝑿, and fix a predicate 𝒉:𝑿 → 𝟎, 𝟏

• Let 𝑺 ∼ 𝕯𝒏. Then by the Hoeffding bound, w.h.p. we have
𝟏

𝑺
⋅ σ𝒙∈𝑺𝒉 𝒙 ≈ 𝔼𝒙∼𝕯 𝒉 𝒙

The Generalization Properties of DP (“anti overfitting”)

Warmup 1:

• Let 𝕯 be a distribution over a domain 𝑿, and fix a predicate 𝒉:𝑿 → 𝟎, 𝟏

• Let 𝑺 ∼ 𝕯𝒏. Then by the Hoeffding bound, w.h.p. we have
𝟏

𝑺
⋅ σ𝒙∈𝑺𝒉 𝒙 ≈ 𝔼𝒙∼𝕯 𝒉 𝒙

Warmup 2:

• Let 𝕯 be a distribution over a domain 𝑿

• Let 𝓐:𝑿𝒏 → 𝟐𝑿 be an algorithm that takes a sample and outputs a predicate

• Let 𝑺 ∼ 𝕯𝒏 and let 𝒉 ← 𝓐 𝑺

• Can we claim that the empirical average is close to the expectation?

• Not in general. E.g., 𝓐 might choose the function 𝒉 𝒙 = 𝟙 𝒙 ∈ 𝑺

The Generalization Properties of DP (“anti overfitting”)

Warmup 1:

• Let 𝕯 be a distribution over a domain 𝑿, and fix a predicate 𝒉:𝑿 → 𝟎, 𝟏

• Let 𝑺 ∼ 𝕯𝒏. Then by the Hoeffding bound, w.h.p. we have
𝟏

𝑺
⋅ σ𝒙∈𝑺𝒉 𝒙 ≈ 𝔼𝒙∼𝕯 𝒉 𝒙

Warmup 2:

• Let 𝕯 be a distribution over a domain 𝑿

• Let 𝓐:𝑿𝒏 → 𝟐𝑿 be an algorithm that takes a sample and outputs a predicate

• Let 𝑺 ∼ 𝕯𝒏 and let 𝒉 ← 𝓐 𝑺

• Can we claim that the empirical average is close to the expectation?

• Not in general. E.g., 𝓐 might choose the function 𝒉 𝒙 = 𝟙 𝒙 ∈ 𝑺

Theorem [DFHPRR'15, BNSSSU'16]:

• Let 𝓐:𝑿𝒏 → 𝟐𝑿 be a differentially private algorithm that outputs a predicate 𝒉:𝑿 → 𝟎, 𝟏

• Let 𝕯 be a distribution over 𝑿

• Let 𝑺 ∼ 𝕯𝒏 and let 𝒉 ← 𝓐 𝑺

• Then w.h.p. we have
𝟏

𝑺
⋅ σ𝒙∈𝑺𝒉 𝒙 ≈ 𝔼𝒙∼𝕯 𝒉 𝒙

Warmup 1:

• Let 𝕯 be a distribution over a domain 𝑿, and fix a predicate 𝒉:𝑿 → 𝟎, 𝟏

• Let 𝑺 ∼ 𝕯𝒏. Then by the Hoeffding bound, w.h.p. we have
𝟏

𝑺
⋅ σ𝒙∈𝑺𝒉 𝒙 ≈ 𝔼𝒙∼𝕯 𝒉 𝒙

Warmup 2:

• Let 𝕯 be a distribution over a domain 𝑿

• Let 𝓐:𝑿𝒏 → 𝟐𝑿 be an algorithm that takes a sample and outputs a predicate

• Let 𝑺 ∼ 𝕯𝒏 and let 𝒉 ← 𝓐 𝑺

• Can we claim that the empirical average is close to the expectation?

• Not in general. E.g., 𝓐 might choose the function 𝒉 𝒙 = 𝟙 𝒙 ∈ 𝑺

Theorem [DFHPRR'15, BNSSSU'16]:

• Let 𝓐:𝑿𝒏 → 𝟐𝑿 be a differentially private algorithm that outputs a predicate 𝒉:𝑿 → 𝟎, 𝟏

• Let 𝕯 be a distribution over 𝑿

• Let 𝑺 ∼ 𝕯𝒏 and let 𝒉 ← 𝓐 𝑺

• Then w.h.p. we have
𝟏

𝑺
⋅ σ𝒙∈𝑺𝒉 𝒙 ≈ 𝔼𝒙∼𝕯 𝒉 𝒙

Here we explain only why this is true in expectation, i.e., 𝔼
𝑺 ∼𝕯

ℎ←𝓐 𝑆

𝒉 𝑺 ≈ 𝔼
𝑺 ∼𝕯

ℎ←𝓐 𝑆

𝒉 𝕯

The Generalization Properties of DP (“anti overfitting”)

Warmup 1:

• Let 𝕯 be a distribution over a domain 𝑿, and fix a predicate 𝒉:𝑿 → 𝟎, 𝟏

• Let 𝑺 ∼ 𝕯𝒏. Then by the Hoeffding bound, w.h.p. we have
𝟏

𝑺
⋅ σ𝒙∈𝑺𝒉 𝒙 ≈ 𝔼𝒙∼𝕯 𝒉 𝒙

Warmup 2:

• Let 𝕯 be a distribution over a domain 𝑿

• Let 𝓐:𝑿𝒏 → 𝟐𝑿 be an algorithm that takes a sample and outputs a predicate

• Let 𝑺 ∼ 𝕯𝒏 and let 𝒉 ← 𝓐 𝑺

• Can we claim that the empirical average is close to the expectation?

• Not in general. E.g., 𝓐 might choose the function 𝒉 𝒙 = 𝟙 𝒙 ∈ 𝑺

Theorem [DFHPRR'15, BNSSSU'16]:

• Let 𝓐:𝑿𝒏 → 𝟐𝑿 be a differentially private algorithm that outputs a predicate 𝒉:𝑿 → 𝟎, 𝟏

• Let 𝕯 be a distribution over 𝑿

• Let 𝑺 ∼ 𝕯𝒏 and let 𝒉 ← 𝓐 𝑺

• Then w.h.p. we have
𝟏

𝑺
⋅ σ𝒙∈𝑺𝒉 𝒙 ≈ 𝔼𝒙∼𝕯 𝒉 𝒙

Here we explain only why this is true in expectation, i.e., 𝔼
𝑺 ∼𝕯

ℎ←𝓐 𝑆

𝒉 𝑺 ≈ 𝔼
𝑺 ∼𝕯

ℎ←𝓐 𝑆

𝒉 𝕯

• 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∼ 𝕯
• 𝒊 ∈𝑹 𝟏, 𝟐, … , 𝒏
• 𝒉 ← 𝓐 𝑺 ∖ 𝒙𝒊
• Return 𝒉 𝒙𝒊

Consider 2 experiments:

• 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∼ 𝕯
• 𝒊 ∈𝑹 𝟏, 𝟐, … , 𝒏
• 𝒉 ← 𝓐 𝑺
• Return 𝒉 𝒙𝒊

≈
𝑫𝑷

The Generalization Properties of DP (“anti overfitting”)

Warmup 1:

• Let 𝕯 be a distribution over a domain 𝑿, and fix a predicate 𝒉:𝑿 → 𝟎, 𝟏

• Let 𝑺 ∼ 𝕯𝒏. Then by the Hoeffding bound, w.h.p. we have
𝟏

𝑺
⋅ σ𝒙∈𝑺𝒉 𝒙 ≈ 𝔼𝒙∼𝕯 𝒉 𝒙

Warmup 2:

• Let 𝕯 be a distribution over a domain 𝑿

• Let 𝓐:𝑿𝒏 → 𝟐𝑿 be an algorithm that takes a sample and outputs a predicate

• Let 𝑺 ∼ 𝕯𝒏 and let 𝒉 ← 𝓐 𝑺

• Can we claim that the empirical average is close to the expectation?

• Not in general. E.g., 𝓐 might choose the function 𝒉 𝒙 = 𝟙 𝒙 ∈ 𝑺

Theorem [DFHPRR'15, BNSSSU'16]:

• Let 𝓐:𝑿𝒏 → 𝟐𝑿 be a differentially private algorithm that outputs a predicate 𝒉:𝑿 → 𝟎, 𝟏

• Let 𝕯 be a distribution over 𝑿

• Let 𝑺 ∼ 𝕯𝒏 and let 𝒉 ← 𝓐 𝑺

• Then w.h.p. we have
𝟏

𝑺
⋅ σ𝒙∈𝑺𝒉 𝒙 ≈ 𝔼𝒙∼𝕯 𝒉 𝒙

Here we explain only why this is true in expectation, i.e., 𝔼
𝑺 ∼𝕯

ℎ←𝓐 𝑆

𝒉 𝑺 ≈ 𝔼
𝑺 ∼𝕯

ℎ←𝓐 𝑆

𝒉 𝕯

• 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∼ 𝕯
• 𝒊 ∈𝑹 𝟏, 𝟐, … , 𝒏
• 𝒉 ← 𝓐 𝑺 ∖ 𝒙𝒊
• Return 𝒉 𝒙𝒊

Consider 2 experiments:

• 𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∼ 𝕯
• 𝒊 ∈𝑹 𝟏, 𝟐, … , 𝒏
• 𝒉 ← 𝓐 𝑺
• Return 𝒉 𝒙𝒊

ℎ on a random
element of 𝑆

ℎ on a random
element of 𝕯

≈
𝑫𝑷

The Generalization Properties of DP (“anti overfitting”)

Differential privacy as a tool
Today’s Outline

1. DP is the enemy of overfitting

2. Application to answering adaptive queries

3. Application to adaptive streaming

• Let 𝕯 be an unknown distribution over a domain 𝑿

• Consider a data analyst who wants to learn properties of 𝕯

• The analyst interacts with 𝕯 via statistical queries:

In each step, the analyst specifies a predicate 𝒉:𝑿 → 𝟎, 𝟏 and obtains an estimate for 𝔼𝒙∼𝕯 𝒉 𝒙

Recall: The Statistical Queries Model

𝒉𝟏

𝒂𝟏 ≈ 𝔼𝒙∼𝕯 𝒉𝟏 𝒙

Data analyst⋮

𝒉𝟐

Unknown dist. 𝕯
over domain 𝑿

𝒂𝟐 ≈ 𝔼𝒙∼𝕯 𝒉𝟐 𝒙

• Let 𝕯 be an unknown distribution over a domain 𝑿

• Consider a data analyst who wants to learn properties of 𝕯

• The analyst interacts with 𝕯 via statistical queries:

In each step, the analyst specifies a predicate 𝒉:𝑿 → 𝟎, 𝟏 and obtains an estimate for 𝔼𝒙∼𝕯 𝒉 𝒙

Recall: The Statistical Queries Model

𝒉𝟏

𝒂𝟏 ≈ 𝔼𝒙∼𝕯 𝒉𝟏 𝒙

Data analyst⋮

𝒉𝟐

Unknown dist. 𝕯
over domain 𝑿

𝒂𝟐 ≈ 𝔼𝒙∼𝕯 𝒉𝟐 𝒙

iid

Mechanism 𝓜 that
answers queries

S=
𝑥1
𝑥2
⋮
𝑥𝑛

Recall: The Statistical Queries Model

𝒉𝟏

𝒂𝟏 ≈ 𝔼𝒙∼𝕯 𝒉𝟏 𝒙

Data analyst⋮

𝒉𝟐

Unknown dist. 𝕯
over domain 𝑿

𝒂𝟐 ≈ 𝔼𝒙∼𝕯 𝒉𝟐 𝒙

iid

Mechanism 𝓜 that
answers queries

S=
𝑥1
𝑥2
⋮
𝑥𝑛

• Let 𝕯 be an unknown distribution over a domain 𝑿

• Consider a data analyst who wants to learn properties of 𝕯

• The analyst interacts with 𝕯 via statistical queries:

In each step, the analyst specifies a predicate 𝒉:𝑿 → 𝟎, 𝟏 and obtains an estimate for 𝔼𝒙∼𝕯 𝒉 𝒙

We want: w.h.p. ∀𝒋, 𝒂𝒋 − 𝔼𝒙∼𝕯 𝒉𝒋 𝒙 ≤ 𝜶

What is the number of samples 𝒏 that 𝓜 needs to ensure this as a function of 𝜶 and the number of queries 𝒌?

• Let 𝕯 be an unknown distribution over a domain 𝑿

• Consider a data analyst who wants to learn properties of 𝕯

• The analyst interacts with 𝕯 via statistical queries:

In each step, the analyst specifies a predicate 𝒉:𝑿 → 𝟎, 𝟏 and obtains an estimate for 𝔼𝒙∼𝕯 𝒉 𝒙

We want: w.h.p. ∀𝒋, 𝒂𝒋 − 𝔼𝒙∼𝕯 𝒉𝒋 𝒙 ≤ 𝜶

What is the number of samples 𝒏 that 𝓜 needs to ensure this as a function of 𝜶 and the number of queries 𝒌?

Recall: The Statistical Queries Model

𝒉𝟏

𝒂𝟏 ≈ 𝔼𝒙∼𝕯 𝒉𝟏 𝒙

Data analyst⋮

𝒉𝟐

Unknown dist. 𝕯
over domain 𝑿

𝒂𝟐 ≈ 𝔼𝒙∼𝕯 𝒉𝟐 𝒙

iid

Mechanism 𝓜 that
answers queries

• The challenge is that the analyst can choose its queries adaptively

• We want to provide accuracy w.r.t. 𝕯
• If we are not careful, we could quickly overfit to 𝑺

S=
𝑥1
𝑥2
⋮
𝑥𝑛

Step back: Non adaptive game

𝒉𝟏, 𝒉𝟐, … , 𝒉𝒌

𝒂𝟏, 𝒂𝟐, … , 𝒂𝒌

Data analyst
Unknown dist. 𝕯
over domain 𝑿

iid

Mechanism 𝓜 that
answers queries

S=
𝑥1
𝑥2
⋮
𝑥𝑛

Natural solution: Answer every 𝒉𝒊 with its empirical avg 𝒂𝒊 = 𝒉𝒊 𝑺

Hoeffding: w.h.p., 𝒉𝒊 𝑺 ≈ 𝒉𝒊 𝕯 for all 𝒊, provided 𝒏 ≳
𝟏

𝜶𝟐
𝐥𝐨𝐠𝒌

Can answer exponential number of non-adaptive queries!

Notation: 𝒉 𝕯 = 𝔼𝒙∼𝕯 𝒉 𝒙 , 𝒉 𝑺 =
𝟏

𝒏
σ𝒊=𝟏
𝒏 𝒉 𝒙𝒊

Recall the adaptive model

Data analyst
Unknown dist. 𝕯
over domain 𝑿

iid

Mechanism 𝓜 that
answers queries

S=
𝑥1
𝑥2
⋮
𝑥𝑛

𝒉𝟏

𝒂𝟏

𝒉𝒌

𝒂𝒌

⋮

𝒉𝟐

𝒂𝟐

Can we answer with empirical average, i.e., answer every

𝒉 with 𝒉 𝑺 =
𝟏

𝒏
σ𝒊=𝟏
𝒏 𝒉 𝒙𝒊 ?

• Domain 𝑿 = 𝟏, 𝟐,… , 𝟐𝒏

• Database 𝑺 with 𝒏 iid uniform samples from 𝑿

Goal: After 1 query, find 𝒉 s.t. 𝒉 𝑺 ≫ 𝒉(𝕯)

Negative result for adaptive case:

Answering every 𝒉𝒊 with 𝒉𝒊 𝑺 fails after 1 query

• Domain 𝑿 = 𝟏, 𝟐,… , 𝟐𝒏

• Database 𝑺 with 𝒏 iid uniform samples from 𝑿

Goal: After 1 query, find 𝒉 s.t. 𝒉 𝑺 ≫ 𝒉(𝕯)

Step 1: Recover the database

• Define 𝒉𝟏 𝒙 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎…𝟎𝟏, and query 𝒉𝟏 𝑺 =?

• Observe: low-order bits of 𝒉𝟏 𝑺 reveal all entries of 𝑺

#zeroes = 𝑥 ⋅ log 𝑛

Negative result for adaptive case:

Answering every 𝒉𝒊 with 𝒉𝒊 𝑺 fails after 1 query

• Domain 𝑿 = 𝟏, 𝟐,… , 𝟐𝒏

• Database 𝑺 with 𝒏 iid uniform samples from 𝑿

Goal: After 1 query, find 𝒉 s.t. 𝒉 𝑺 ≫ 𝒉(𝕯)

Step 1: Recover the database

• Define 𝒉𝟏 𝒙 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎…𝟎𝟏, and query 𝒉𝟏 𝑺 =?

• Observe: low-order bits of 𝒉𝟏 𝑺 reveal all entries of 𝑺

If 𝑺 = (𝟏, 𝟑, 𝟒, 𝟒, 𝟒) then σ𝒙∈𝑺𝒉𝟏 𝒙 is

#zeroes = 𝑥 ⋅ log 𝑛

+𝟎. 𝟎𝟎𝟎𝟏
+𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏
+𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏
+𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏
+𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏

+𝟎. 𝟎𝟎𝟎𝟏𝟎𝟎𝟎𝟎𝟎𝟏𝟎𝟏𝟏

Negative result for adaptive case:

Answering every 𝒉𝒊 with 𝒉𝒊 𝑺 fails after 1 query

• Domain 𝑿 = 𝟏, 𝟐,… , 𝟐𝒏

• Database 𝑺 with 𝒏 iid uniform samples from 𝑿

Goal: After 1 query, find 𝒉 s.t. 𝒉 𝑺 ≫ 𝒉(𝕯)

Step 1: Recover the database

• Define 𝒉𝟏 𝒙 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎…𝟎𝟏, and query 𝒉𝟏 𝑺 =?

• Observe: low-order bits of 𝒉𝟏 𝑺 reveal all entries of 𝑺

Step 2: Overfitting

• Define 𝒉𝟐 𝒙 = ቊ
𝟏 , 𝒙 ∈ 𝑺
𝟎 , 𝒙 ∉ 𝑺

• Observe: 𝒉𝟐 𝑺 = 𝟏 but 𝒉𝟐 𝕯 ≤
𝟏

𝟐

#zeroes = 𝑥 ⋅ log 𝑛

Negative result for adaptive case:

Answering every 𝒉𝒊 with 𝒉𝒊 𝑺 fails after 1 query

• Domain 𝑿 = 𝟏, 𝟐,… , 𝟐𝒏

• Database 𝑺 with 𝒏 iid uniform samples from 𝑿

Goal: After 1 query, find 𝒉 s.t. 𝒉 𝑺 ≫ 𝒉(𝕯)

Step 1: Recover the database

• Define 𝒉𝟏 𝒙 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎…𝟎𝟏, and query 𝒉𝟏 𝑺 =?

• Observe: low-order bits of 𝒉𝟏 𝑺 reveal all entries of 𝑺

Step 2: Overfitting

• Define 𝒉𝟐 𝒙 = ቊ
𝟏 , 𝒙 ∈ 𝑺
𝟎 , 𝒙 ∉ 𝑺

• Observe: 𝒉𝟐 𝑺 = 𝟏 but 𝒉𝟐 𝕯 ≤
𝟏

𝟐

#zeroes = 𝑥 ⋅ log 𝑛

Takeaway: Learning info about the data set allows the analyst to overfit

Negative result for adaptive case:

Answering every 𝒉𝒊 with 𝒉𝒊 𝑺 fails after 1 query

Recall the adaptive model

Data analyst
Unknown dist. 𝕯
over domain 𝑿

iid

Mechanism 𝓜 that
answers queries

S=
𝑥1
𝑥2
⋮
𝑥𝑛

𝒉𝟏

𝒂𝟏

𝒉𝒌

𝒂𝒌

⋮

𝒉𝟐

𝒂𝟐

So far: reusing the data and answering with empirical
average does not work

Natural approach #2: Data splitting
• Divide the data set into 𝒌 chunks of size 𝒏/𝒌 each

• Answer 𝒉𝒊 using its empirical mean on chunk 𝒊

S =
𝑥1
𝑥2
⋮
⋮
⋮
𝑥𝑛

𝑖𝑖𝑑

Mechanism 𝓜

Data analystUnknown dist. 𝕯
over domain 𝑿

𝑆1=

𝑥1
⋮

𝑥𝑛/𝑘

𝑆2=

𝑥𝑛/𝑘+1
⋮

𝑥2𝑛/𝑘

𝑆𝑘=

𝑥𝑛−𝑛/𝑘+1
⋮
𝑥𝑛

⋮

Natural approach #2: Data splitting
• Divide the data set into 𝒌 chunks of size 𝒏/𝒌 each

• Answer 𝒉𝒊 using its empirical mean on chunk 𝒊

S =
𝑥1
𝑥2
⋮
⋮
⋮
𝑥𝑛

𝑖𝑖𝑑

Mechanism 𝓜

𝒉𝟏

𝒂𝟏 = 𝒉𝟏 𝑺𝟏

Data analystUnknown dist. 𝕯
over domain 𝑿

𝑆1=

𝑥1
⋮

𝑥𝑛/𝑘

𝑆2=

𝑥𝑛/𝑘+1
⋮

𝑥2𝑛/𝑘

𝑆𝑘=

𝑥𝑛−𝑛/𝑘+1
⋮
𝑥𝑛

⋮

Natural approach #2: Data splitting
• Divide the data set into 𝒌 chunks of size 𝒏/𝒌 each

• Answer 𝒉𝒊 using its empirical mean on chunk 𝒊

S =
𝑥1
𝑥2
⋮
⋮
⋮
𝑥𝑛

𝑖𝑖𝑑

Mechanism 𝓜

𝒉𝟏

𝒂𝟏 = 𝒉𝟏 𝑺𝟏

Data analyst

𝒉𝟐

Unknown dist. 𝕯
over domain 𝑿

𝑆1=

𝑥1
⋮

𝑥𝑛/𝑘

𝑆2=

𝑥𝑛/𝑘+1
⋮

𝑥2𝑛/𝑘

𝑆𝑘=

𝑥𝑛−𝑛/𝑘+1
⋮
𝑥𝑛

⋮

𝒂𝟐 = 𝒉𝟐 𝑺𝟐

Natural approach #2: Data splitting
• Divide the data set into 𝒌 chunks of size 𝒏/𝒌 each

• Answer 𝒉𝒊 using its empirical mean on chunk 𝒊

S =
𝑥1
𝑥2
⋮
⋮
⋮
𝑥𝑛

𝑖𝑖𝑑

Mechanism 𝓜

𝒉𝟏

𝒂𝟏 = 𝒉𝟏 𝑺𝟏

Data analyst𝒉𝒌

⋮

𝒉𝟐

Unknown dist. 𝕯
over domain 𝑿

𝑆1=

𝑥1
⋮

𝑥𝑛/𝑘

𝑆2=

𝑥𝑛/𝑘+1
⋮

𝑥2𝑛/𝑘

𝑆𝑘=

𝑥𝑛−𝑛/𝑘+1
⋮
𝑥𝑛

⋮

𝒂𝟐 = 𝒉𝟐 𝑺𝟐

𝒂𝒌 = 𝒉𝒌 𝑺𝒌

Natural approach #2: Data splitting
• Divide the data set into 𝒌 chunks of size 𝒏/𝒌 each

• Answer 𝒉𝒊 using its empirical mean on chunk 𝒊

Upside: Can ignore adaptivity and use Hoeffding/Chernoff

Downside: With this approach we need 𝒏 > 𝒌/𝜶𝟐

But, we can do better!

S =
𝑥1
𝑥2
⋮
⋮
⋮
𝑥𝑛

𝑖𝑖𝑑

Mechanism 𝓜

𝒉𝟏

𝒂𝟏 = 𝒉𝟏 𝑺𝟏

Data analyst𝒉𝒌

⋮

𝒉𝟐

Unknown dist. 𝕯
over domain 𝑿

𝑆1=

𝑥1
⋮

𝑥𝑛/𝑘

𝑆2=

𝑥𝑛/𝑘+1
⋮

𝑥2𝑛/𝑘

𝑆𝑘=

𝑥𝑛−𝑛/𝑘+1
⋮
𝑥𝑛

⋮

𝒂𝟐 = 𝒉𝟐 𝑺𝟐

𝒂𝒌 = 𝒉𝒌 𝑺𝒌

DP to the rescue

Data analyst
Unknown dist. 𝕯
over domain 𝑿

iid

Mechanism 𝓜 that
answers queries

S=
𝑥1
𝑥2
⋮
𝑥𝑛

𝒉𝟏

𝒂𝟏

𝒉𝒌

𝒂𝒌

⋮

𝒉𝟐

𝒂𝟐

1) Assume 𝓜 is 𝜖, 𝛿 -DP mechanism that approximates the empirical average of 𝒌 adaptively chosen queries

DP to the rescue

Data analyst
Unknown dist. 𝕯
over domain 𝑿

iid

Mechanism 𝓜 that
answers queries

S=
𝑥1
𝑥2
⋮
𝑥𝑛

𝒉𝟏

𝒂𝟏

𝒉𝒌

𝒂𝒌

⋮

𝒉𝟐

𝒂𝟐

1) Assume 𝓜 is 𝜖, 𝛿 -DP mechanism that approximates the empirical average of 𝒌 adaptively chosen queries
2) Then the answers 𝑎1, … , 𝑎𝑘 are the result of a private computation on 𝑆
3) By post-processing, the queries 𝒉𝟏, … , 𝒉𝒌 are also the result of a private computation on 𝑺

DP to the rescue

Data analyst
Unknown dist. 𝕯
over domain 𝑿

iid

Mechanism 𝓜 that
answers queries

S=
𝑥1
𝑥2
⋮
𝑥𝑛

𝒉𝟏

𝒂𝟏

𝒉𝒌

𝒂𝒌

⋮

𝒉𝟐

𝒂𝟐

1) Assume 𝓜 is 𝜖, 𝛿 -DP mechanism that approximates the empirical average of 𝒌 adaptively chosen queries
2) Then the answers 𝑎1, … , 𝑎𝑘 are the result of a private computation on 𝑆
3) By post-processing, the queries 𝒉𝟏, … , 𝒉𝒌 are also the result of a private computation on 𝑺
4) But then for every 𝒊 we have 𝒂𝒊 ต≈

𝐛𝐲 𝟏

𝒉𝒊 𝑺 ต≈
𝐃𝐏 𝐠𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧

𝒉𝒊 𝕯

DP to the rescue

Data analyst
Unknown dist. 𝕯
over domain 𝑿

iid

Mechanism 𝓜 that
answers queries

S=
𝑥1
𝑥2
⋮
𝑥𝑛

𝒉𝟏

𝒂𝟏

𝒉𝒌

𝒂𝒌

⋮

𝒉𝟐

𝒂𝟐

1) Assume 𝓜 is 𝜖, 𝛿 -DP mechanism that approximates the empirical average of 𝒌 adaptively chosen queries
2) Then the answers 𝑎1, … , 𝑎𝑘 are the result of a private computation on 𝑆
3) By post-processing, the queries 𝒉𝟏, … , 𝒉𝒌 are also the result of a private computation on 𝑺
4) But then for every 𝒊 we have 𝒂𝒊 ต≈

𝐛𝐲 𝟏

𝒉𝒊 𝑺 ต≈
𝐃𝐏 𝐠𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧

𝒉𝒊 𝕯

⟹
Theorem [DMNS’06]

There is an efficient private alg. estimating
the empirical average of ≈ 𝒏𝟐 adaptive

queries using a database of size 𝒏

Theorem [DFHPRP’15, BNSSSU’16]
There is an efficient alg. answering
≈ 𝒏𝟐 adaptive queries on the

distribution using 𝒏 iid samples

Differential privacy as a tool
Today’s Outline

1. DP is the enemy of overfitting

2. Application to answering adaptive queries

3. Application to adaptive streaming

Classical vs. Adaptive streaming

• Randomized algorithms are often analyzed under the assumption that their internal
randomness is independent of their inputs

• This is a reasonable assumption for offline algorithms, which get all their inputs at once,
process it, and spit out the results

• However, in interactive settings, this assumption is not always reasonable: future
inputs may depend on previous outputs, and hence, depend on the internal
randomness of the algorithm

Takeaway: We want to design algorithms providing provable guarantees even for adaptive inputs

Oblivious Streaming Adaptive Streaming
[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

Oblivious Streaming Adaptive Streaming
St

re
am

in
gA

lg
or

ith
m

[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

Oblivious Streaming Adaptive Streaming

𝒖𝟏, 𝒖𝟐, … , 𝒖𝒎 = fixed stream (unknown to the algorithm)

St
re

am
in

gA
lg

or
ith

m

[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

Oblivious Streaming Adaptive Streaming

𝒖𝟏, 𝒖𝟐, … , 𝒖𝒎 = fixed stream (unknown to the algorithm)

𝒖𝟏

St
re

am
in

gA
lg

or
ith

m

[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

Oblivious Streaming Adaptive Streaming

𝒖𝟏, 𝒖𝟐, … , 𝒖𝒎 = fixed stream (unknown to the algorithm)

𝒖𝟏

𝒛𝟏

St
re

am
in

gA
lg

or
ith

m

[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

Oblivious Streaming Adaptive Streaming

𝒖𝟏, 𝒖𝟐, … , 𝒖𝒎 = fixed stream (unknown to the algorithm)

𝒖𝟐𝒖𝟏

𝒛𝟏

St
re

am
in

gA
lg

or
ith

m

[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

Oblivious Streaming Adaptive Streaming

𝒖𝟏, 𝒖𝟐, … , 𝒖𝒎 = fixed stream (unknown to the algorithm)

𝒖𝟐

𝒛𝟐

𝒖𝟏

𝒛𝟏

St
re

am
in

gA
lg

or
ith

m

[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

Oblivious Streaming Adaptive Streaming

𝒖𝟏, 𝒖𝟐, … , 𝒖𝒎 = fixed stream (unknown to the algorithm)

𝒖𝟐

𝒛𝟐

𝒖𝟏

𝒛𝟏

𝒖𝒎

𝒛𝒎…

…

St
re

am
in

gA
lg

or
ith

m

[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

Oblivious Streaming Adaptive Streaming

St
re

am
in

gA
lg

or
ith

m

𝒖𝟏, 𝒖𝟐, … , 𝒖𝒎 = fixed stream (unknown to the algorithm)

𝒖𝟐

𝒛𝟐

𝒖𝟏

𝒛𝟏

𝒖𝒎

𝒛𝒎…

…

St
re

am
in

gA
lg

or
ith

m

[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

Oblivious Streaming Adaptive Streaming

St
re

am
in

gA
lg

or
ith

m

𝒖𝟏, 𝒖𝟐, … , 𝒖𝒎 = fixed stream (unknown to the algorithm)

𝒖𝟐

𝒛𝟐

𝒖𝟏

𝒛𝟏

𝒖𝒎

𝒛𝒎…

…
Adversary chooses 𝒖𝒊 based on previous answers

Ad
ve

rs
ar

y

St
re

am
in

gA
lg

or
ith

m

[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

Oblivious Streaming Adaptive Streaming

St
re

am
in

gA
lg

or
ith

m

𝒖𝟏

𝒖𝟏, 𝒖𝟐, … , 𝒖𝒎 = fixed stream (unknown to the algorithm)

𝒖𝟐

𝒛𝟐

𝒖𝟏

𝒛𝟏

𝒖𝒎

𝒛𝒎…

…
Adversary chooses 𝒖𝒊 based on previous answers

Ad
ve

rs
ar

y

St
re

am
in

gA
lg

or
ith

m

[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

Oblivious Streaming Adaptive Streaming

St
re

am
in

gA
lg

or
ith

m

𝒖𝟏 𝒛𝟏

𝒖𝟏, 𝒖𝟐, … , 𝒖𝒎 = fixed stream (unknown to the algorithm)

𝒖𝟐

𝒛𝟐

𝒖𝟏

𝒛𝟏

𝒖𝒎

𝒛𝒎…

…
Adversary chooses 𝒖𝒊 based on previous answers

Ad
ve

rs
ar

y

St
re

am
in

gA
lg

or
ith

m

[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

Oblivious Streaming Adaptive Streaming

St
re

am
in

gA
lg

or
ith

m

𝒖𝟏 𝒛𝟏

𝒖𝟏, 𝒖𝟐, … , 𝒖𝒎 = fixed stream (unknown to the algorithm)

𝒖𝟐

𝒛𝟐

𝒖𝟏

𝒛𝟏

𝒖𝒎

𝒛𝒎…

…
Adversary chooses 𝒖𝒊 based on previous answers

Ad
ve

rs
ar

y

𝒖𝟐

St
re

am
in

gA
lg

or
ith

m

[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

Oblivious Streaming Adaptive Streaming

St
re

am
in

gA
lg

or
ith

m

𝒖𝟏 𝒛𝟏

𝒖𝟏, 𝒖𝟐, … , 𝒖𝒎 = fixed stream (unknown to the algorithm)

𝒖𝟐

𝒛𝟐

𝒖𝟏

𝒛𝟏

𝒖𝒎

𝒛𝒎…

…
Adversary chooses 𝒖𝒊 based on previous answers

Ad
ve

rs
ar

y

𝒖𝟐 𝒛𝟐

St
re

am
in

gA
lg

or
ith

m

[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

Oblivious Streaming Adaptive Streaming

St
re

am
in

gA
lg

or
ith

m

𝒖𝟏 𝒛𝟏 …

𝒖𝟏, 𝒖𝟐, … , 𝒖𝒎 = fixed stream (unknown to the algorithm)

𝒖𝟐

𝒛𝟐

𝒖𝟏

𝒛𝟏

𝒖𝒎

𝒛𝒎…

…
Adversary chooses 𝒖𝒊 based on previous answers

Ad
ve

rs
ar

y

𝒖𝟐 𝒖𝒎𝒛𝟐 𝒛𝒎

St
re

am
in

gA
lg

or
ith

m

[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

Oblivious Streaming Adaptive Streaming

St
re

am
in

gA
lg

or
ith

m

𝒖𝟏 𝒛𝟏 …

𝒖𝟏, 𝒖𝟐, … , 𝒖𝒎 = fixed stream (unknown to the algorithm)

𝒖𝟐

𝒛𝟐

𝒖𝟏

𝒛𝟏

𝒖𝒎

𝒛𝒎…

…
Adversary chooses 𝒖𝒊 based on previous answers

Ad
ve

rs
ar

y

𝒖𝟐 𝒖𝒎𝒛𝟐 𝒛𝒎

St
re

am
in

gA
lg

or
ith

m

[Hard, Woodruff '13], [Ben-Eliezer, Jayaram, Woodruff, Yogev '20][Alon, Matias, Szegedy '96]

Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)

The Adversarial Streaming Model HW13, BJWY20

• Fix a function 𝒈 mapping a (prefix of the) stream to a real number, and an approximation parameter 𝜶
‒ E.g., 𝒈 might count the number of distinct elements in the stream

• Two-player game between a (randomized) StreamingAlgorithm and an Adversary

• In the 𝒊th round:
1. The Adversary chooses an update 𝒖𝒊 for the stream, which can depend on all previous stream

updates and outputs of StreamingAlgorithm

2. The StreamingAlgorithm processes the new update and outputs its current response 𝒛𝒊

• The goal of the Adversary is to make the StreamingAlgorithm output an incorrect response 𝒛𝒊 at some point 𝒊

The Adversarial Streaming Model HW13, BJWY20

• Deterministic streaming algorithms are adversarially robust
- However, many streaming algorithms provably must be randomized [AMS ’96]

• Many of the randomized streaming algorithms are not adversarially robust

• Fix a function 𝒈 mapping a (prefix of the) stream to a real number, and an approximation parameter 𝜶
‒ E.g., 𝒈 might count the number of distinct elements in the stream

• Two-player game between a (randomized) StreamingAlgorithm and an Adversary

• In the 𝒊th round:
1. The Adversary chooses an update 𝒖𝒊 for the stream, which can depend on all previous stream

updates and outputs of StreamingAlgorithm

2. The StreamingAlgorithm processes the new update and outputs its current response 𝒛𝒊

• The goal of the Adversary is to make the StreamingAlgorithm output an incorrect response 𝒛𝒊 at some point 𝒊

Do oblivious streaming algorithms work in the adversarial model?

The Adversarial Streaming Model HW13, BJWY20

• Deterministic streaming algorithms are adversarially robust
- However, many streaming algorithms provably must be randomized [AMS ’96]

• Many of the randomized streaming algorithms are not adversarially robust

• Fix a function 𝒈 mapping a (prefix of the) stream to a real number, and an approximation parameter 𝜶
‒ E.g., 𝒈 might count the number of distinct elements in the stream

• Two-player game between a (randomized) StreamingAlgorithm and an Adversary

• In the 𝒊th round:
1. The Adversary chooses an update 𝒖𝒊 for the stream, which can depend on all previous stream

updates and outputs of StreamingAlgorithm

2. The StreamingAlgorithm processes the new update and outputs its current response 𝒛𝒊

• The goal of the Adversary is to make the StreamingAlgorithm output an incorrect response 𝒛𝒊 at some point 𝒊

Informal takeaway: The difficulty with adversarial streaming is that as time goes by the adversary might
learn information about the internal randomness of the algorithm

Do oblivious streaming algorithms work in the adversarial model?

Example: The AMS sketch for 𝑭𝟐
Alon, Matias,
Szegedy 96

Example: The AMS sketch for 𝑭𝟐
• Every item in the stream is a pair 𝒖𝒊, 𝚫𝒊

where 𝒖𝒊 ∈ ℝ𝒏 is a standard basis vector and
𝚫𝒊 ∈ ℝ is its weight

• At every time step 𝒊, the goal is to estimate

𝒇 𝒊
𝟐

𝟐
for 𝒇 𝒊 = 𝚫𝟏 ⋅ 𝒖𝟏 +⋯+ 𝚫𝒊 ⋅ 𝒖𝒊

Alon, Matias,
Szegedy 96

Example: The AMS sketch for 𝑭𝟐
• Every item in the stream is a pair 𝒖𝒊, 𝚫𝒊

where 𝒖𝒊 ∈ ℝ𝒏 is a standard basis vector and
𝚫𝒊 ∈ ℝ is its weight

• At every time step 𝒊, the goal is to estimate

𝒇 𝒊
𝟐

𝟐
for 𝒇 𝒊 = 𝚫𝟏 ⋅ 𝒖𝟏 +⋯+ 𝚫𝒊 ⋅ 𝒖𝒊

Alon, Matias,
Szegedy 96

1. Let 𝑨 be 𝒕x𝒏 matrix with entries uniformly in ±𝟏

2. Initiate 𝒚 = 𝟎 ∈ ℝ𝒕

3. For 𝒊 = 𝟏, 𝟐, … ,𝒎 do:
• Obtain the next update vector 𝒗𝒊 = 𝚫𝒊 ⋅ 𝒖𝒊
• Let 𝒚 ← 𝒚 + 𝑨 ⋅ 𝒗𝒊

• Output estimation 𝒛𝒊 =
𝟏

𝒕
⋅ 𝒚 𝟐

𝟐

Example: The AMS sketch for 𝑭𝟐
• Every item in the stream is a pair 𝒖𝒊, 𝚫𝒊

where 𝒖𝒊 ∈ ℝ𝒏 is a standard basis vector and
𝚫𝒊 ∈ ℝ is its weight

• At every time step 𝒊, the goal is to estimate

𝒇 𝒊
𝟐

𝟐
for 𝒇 𝒊 = 𝚫𝟏 ⋅ 𝒖𝟏 +⋯+ 𝚫𝒊 ⋅ 𝒖𝒊

Alon, Matias,
Szegedy 96

1. Let 𝑨 be 𝒕x𝒏 matrix with entries uniformly in ±𝟏

2. Initiate 𝒚 = 𝟎 ∈ ℝ𝒕

3. For 𝒊 = 𝟏, 𝟐, … ,𝒎 do:
• Obtain the next update vector 𝒗𝒊 = 𝚫𝒊 ⋅ 𝒖𝒊
• Let 𝒚 ← 𝒚 + 𝑨 ⋅ 𝒗𝒊

• Output estimation 𝒛𝒊 =
𝟏

𝒕
⋅ 𝒚 𝟐

𝟐

• Let 𝒂ℓ denote the ℓth row of 𝑨

• Observe: 𝒛𝒊 =
𝟏

𝒕
⋅ 𝑨 ⋅ 𝒗𝟏 +⋯+ 𝑨 ⋅ 𝒗𝒊 𝟐

𝟐 =
𝟏

𝒕
⋅ 𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐
=

𝒂𝟏⋅𝒇
𝒊

𝟐
+⋯+ 𝒂𝒕⋅𝒇

𝒊
𝟐

𝒕

Analysis:

Example: The AMS sketch for 𝑭𝟐
• Every item in the stream is a pair 𝒖𝒊, 𝚫𝒊

where 𝒖𝒊 ∈ ℝ𝒏 is a standard basis vector and
𝚫𝒊 ∈ ℝ is its weight

• At every time step 𝒊, the goal is to estimate

𝒇 𝒊
𝟐

𝟐
for 𝒇 𝒊 = 𝚫𝟏 ⋅ 𝒖𝟏 +⋯+ 𝚫𝒊 ⋅ 𝒖𝒊

Alon, Matias,
Szegedy 96

1. Let 𝑨 be 𝒕x𝒏 matrix with entries uniformly in ±𝟏

2. Initiate 𝒚 = 𝟎 ∈ ℝ𝒕

3. For 𝒊 = 𝟏, 𝟐, … ,𝒎 do:
• Obtain the next update vector 𝒗𝒊 = 𝚫𝒊 ⋅ 𝒖𝒊
• Let 𝒚 ← 𝒚 + 𝑨 ⋅ 𝒗𝒊

• Output estimation 𝒛𝒊 =
𝟏

𝒕
⋅ 𝒚 𝟐

𝟐

• Let 𝒂ℓ denote the ℓth row of 𝑨

• Observe: 𝒛𝒊 =
𝟏

𝒕
⋅ 𝑨 ⋅ 𝒗𝟏 +⋯+ 𝑨 ⋅ 𝒗𝒊 𝟐

𝟐 =
𝟏

𝒕
⋅ 𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐
=

𝒂𝟏⋅𝒇
𝒊

𝟐
+⋯+ 𝒂𝒕⋅𝒇

𝒊
𝟐

𝒕

• For every (fixed) vector 𝒇 ∈ ℝ𝒏 and ℓ ∈ [𝒕] we have

𝔼 𝒂ℓ ⋅ 𝒇
𝟐 = 𝔼 ෍

𝒋∈ 𝒏

𝒂ℓ,𝒋 ⋅ 𝒇𝒋

𝟐

=
(pairwise)

෍

𝒋∈ 𝒏

𝒇𝒋
𝟐 = 𝒇 𝟐

𝟐

Analysis:

Example: The AMS sketch for 𝑭𝟐
• Every item in the stream is a pair 𝒖𝒊, 𝚫𝒊

where 𝒖𝒊 ∈ ℝ𝒏 is a standard basis vector and
𝚫𝒊 ∈ ℝ is its weight

• At every time step 𝒊, the goal is to estimate

𝒇 𝒊
𝟐

𝟐
for 𝒇 𝒊 = 𝚫𝟏 ⋅ 𝒖𝟏 +⋯+ 𝚫𝒊 ⋅ 𝒖𝒊

Alon, Matias,
Szegedy 96

1. Let 𝑨 be 𝒕x𝒏 matrix with entries uniformly in ±𝟏

2. Initiate 𝒚 = 𝟎 ∈ ℝ𝒕

3. For 𝒊 = 𝟏, 𝟐, … ,𝒎 do:
• Obtain the next update vector 𝒗𝒊 = 𝚫𝒊 ⋅ 𝒖𝒊
• Let 𝒚 ← 𝒚 + 𝑨 ⋅ 𝒗𝒊

• Output estimation 𝒛𝒊 =
𝟏

𝒕
⋅ 𝒚 𝟐

𝟐

• Let 𝒂ℓ denote the ℓth row of 𝑨

• Observe: 𝒛𝒊 =
𝟏

𝒕
⋅ 𝑨 ⋅ 𝒗𝟏 +⋯+ 𝑨 ⋅ 𝒗𝒊 𝟐

𝟐 =
𝟏

𝒕
⋅ 𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐
=

𝒂𝟏⋅𝒇
𝒊

𝟐
+⋯+ 𝒂𝒕⋅𝒇

𝒊
𝟐

𝒕

• For every (fixed) vector 𝒇 ∈ ℝ𝒏 and ℓ ∈ [𝒕] we have

𝔼 𝒂ℓ ⋅ 𝒇
𝟐 = 𝔼 ෍

𝒋∈ 𝒏

𝒂ℓ,𝒋 ⋅ 𝒇𝒋

𝟐

=
(pairwise)

෍

𝒋∈ 𝒏

𝒇𝒋
𝟐 = 𝒇 𝟐

𝟐

⟹ Every 𝒂ℓ ⋅ 𝒇
𝟐 is an unbiased estimator for 𝒇 𝟐

𝟐

• Averaging over 𝒕 reduces variance and improves estimation

Analysis:

Example: The AMS sketch for 𝑭𝟐
• Every item in the stream is a pair 𝒖𝒊, 𝚫𝒊

where 𝒖𝒊 ∈ ℝ𝒏 is a standard basis vector and
𝚫𝒊 ∈ ℝ is its weight

• At every time step 𝒊, the goal is to estimate

𝒇 𝒊
𝟐

𝟐
for 𝒇 𝒊 = 𝚫𝟏 ⋅ 𝒖𝟏 +⋯+ 𝚫𝒊 ⋅ 𝒖𝒊

Alon, Matias,
Szegedy 96

1. Let 𝑨 be 𝒕x𝒏 matrix with entries uniformly in ±𝟏

2. Initiate 𝒚 = 𝟎 ∈ ℝ𝒕

3. For 𝒊 = 𝟏, 𝟐, … ,𝒎 do:
• Obtain the next update vector 𝒗𝒊 = 𝚫𝒊 ⋅ 𝒖𝒊
• Let 𝒚 ← 𝒚 + 𝑨 ⋅ 𝒗𝒊

• Output estimation 𝒛𝒊 =
𝟏

𝒕
⋅ 𝒚 𝟐

𝟐

• Let 𝒂ℓ denote the ℓth row of 𝑨

• Observe: 𝒛𝒊 =
𝟏

𝒕
⋅ 𝑨 ⋅ 𝒗𝟏 +⋯+ 𝑨 ⋅ 𝒗𝒊 𝟐

𝟐 =
𝟏

𝒕
⋅ 𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐
=

𝒂𝟏⋅𝒇
𝒊

𝟐
+⋯+ 𝒂𝒕⋅𝒇

𝒊
𝟐

𝒕

• For every (fixed) vector 𝒇 ∈ ℝ𝒏 and ℓ ∈ [𝒕] we have

𝔼 𝒂ℓ ⋅ 𝒇
𝟐 = 𝔼 ෍

𝒋∈ 𝒏

𝒂ℓ,𝒋 ⋅ 𝒇𝒋

𝟐

=
(pairwise)

෍

𝒋∈ 𝒏

𝒇𝒋
𝟐 = 𝒇 𝟐

𝟐

⟹ Every 𝒂ℓ ⋅ 𝒇
𝟐 is an unbiased estimator for 𝒇 𝟐

𝟐

• Averaging over 𝒕 reduces variance and improves estimation

Analysis:

Adversary for the AMS Sketch HW13, BJWY20

Adversary for the AMS Sketch
Recall AMS sketch

• Random matrix 𝑨 ∈ ±𝟏 𝒕×𝒏

• After the 𝒊th update, respond with
𝟏

𝒕
𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐
=

𝟏

𝒕
𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐

where 𝒇 𝒊 = 𝚫𝟏 ⋅ 𝒖𝟏 +⋯+ 𝚫𝒊 ⋅ 𝒖𝒊

HW13, BJWY20

Adversary for the AMS Sketch
Recall AMS sketch

• Random matrix 𝑨 ∈ ±𝟏 𝒕×𝒏

• After the 𝒊th update, respond with
𝟏

𝒕
𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐
=

𝟏

𝒕
𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐

where 𝒇 𝒊 = 𝚫𝟏 ⋅ 𝒖𝟏 +⋯+ 𝚫𝒊 ⋅ 𝒖𝒊

The attack

• Set 𝒘 ← 𝑪 ⋅ 𝒕 ⋅ 𝒆𝟏

• For 𝒊 = 𝟐, 𝟑, … ,𝒎 = 𝑶 𝒕 do

1. 𝐨𝐥𝐝 ←
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

2. 𝒘 ← 𝒘+ 𝒆𝒊

3. 𝐧𝐞𝐰 ←
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

4. If 𝐧𝐞𝐰 > 𝐨𝐥𝐝 then 𝒘 ← 𝒘− 𝒆𝒊

HW13, BJWY20

Adversary for the AMS Sketch
Recall AMS sketch

• Random matrix 𝑨 ∈ ±𝟏 𝒕×𝒏

• After the 𝒊th update, respond with
𝟏

𝒕
𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐
=

𝟏

𝒕
𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐

where 𝒇 𝒊 = 𝚫𝟏 ⋅ 𝒖𝟏 +⋯+ 𝚫𝒊 ⋅ 𝒖𝒊

The attack

• Set 𝒘 ← 𝑪 ⋅ 𝒕 ⋅ 𝒆𝟏

• For 𝒊 = 𝟐, 𝟑, … ,𝒎 = 𝑶 𝒕 do

1. 𝐨𝐥𝐝 ←
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

2. 𝒘 ← 𝒘+ 𝒆𝒊

3. 𝐧𝐞𝐰 ←
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

4. If 𝐧𝐞𝐰 > 𝐨𝐥𝐝 then 𝒘 ← 𝒘− 𝒆𝒊

Analysis

• At all times 𝒘 𝟐
𝟐 ≥ 𝑪𝟐 ⋅ 𝒕 by init

⟹ Suffices to show that
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

drops below 𝑪𝟐/𝟐 ⋅ 𝒕

HW13, BJWY20

Adversary for the AMS Sketch
Recall AMS sketch

• Random matrix 𝑨 ∈ ±𝟏 𝒕×𝒏

• After the 𝒊th update, respond with
𝟏

𝒕
𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐
=

𝟏

𝒕
𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐

where 𝒇 𝒊 = 𝚫𝟏 ⋅ 𝒖𝟏 +⋯+ 𝚫𝒊 ⋅ 𝒖𝒊

The attack

• Set 𝒘 ← 𝑪 ⋅ 𝒕 ⋅ 𝒆𝟏

• For 𝒊 = 𝟐, 𝟑, … ,𝒎 = 𝑶 𝒕 do

1. 𝐨𝐥𝐝 ←
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

2. 𝒘 ← 𝒘+ 𝒆𝒊

3. 𝐧𝐞𝐰 ←
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

4. If 𝐧𝐞𝐰 > 𝐨𝐥𝐝 then 𝒘 ← 𝒘− 𝒆𝒊

Analysis

• At all times 𝒘 𝟐
𝟐 ≥ 𝑪𝟐 ⋅ 𝒕 by init

⟹ Suffices to show that
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

drops below 𝑪𝟐/𝟐 ⋅ 𝒕

• 𝐧𝐞𝐰𝒊 =
𝟏

𝒕
𝑨 ⋅ 𝒘 + 𝒆𝒊

𝟐

𝟐

=
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

+
𝟏

𝒕
𝑨 ⋅ 𝒆𝒊

𝟐

𝟐

+ 𝟐
𝟏

𝒕
𝑨𝒘,

𝟏

𝒕
𝑨𝒆𝒊

= 𝐨𝐥𝐝𝒊 + 𝟏 + 𝟐
𝟏

𝒕
𝑨𝒘,

𝟏

𝒕
𝑨𝒆𝒊

HW13, BJWY20

Adversary for the AMS Sketch
Recall AMS sketch

• Random matrix 𝑨 ∈ ±𝟏 𝒕×𝒏

• After the 𝒊th update, respond with
𝟏

𝒕
𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐
=

𝟏

𝒕
𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐

where 𝒇 𝒊 = 𝚫𝟏 ⋅ 𝒖𝟏 +⋯+ 𝚫𝒊 ⋅ 𝒖𝒊

The attack

• Set 𝒘 ← 𝑪 ⋅ 𝒕 ⋅ 𝒆𝟏

• For 𝒊 = 𝟐, 𝟑, … ,𝒎 = 𝑶 𝒕 do

1. 𝐨𝐥𝐝 ←
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

2. 𝒘 ← 𝒘+ 𝒆𝒊

3. 𝐧𝐞𝐰 ←
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

4. If 𝐧𝐞𝐰 > 𝐨𝐥𝐝 then 𝒘 ← 𝒘− 𝒆𝒊

Analysis

• At all times 𝒘 𝟐
𝟐 ≥ 𝑪𝟐 ⋅ 𝒕 by init

⟹ Suffices to show that
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

drops below 𝑪𝟐/𝟐 ⋅ 𝒕

• 𝐧𝐞𝐰𝒊 =
𝟏

𝒕
𝑨 ⋅ 𝒘 + 𝒆𝒊

𝟐

𝟐

=
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

+
𝟏

𝒕
𝑨 ⋅ 𝒆𝒊

𝟐

𝟐

+ 𝟐
𝟏

𝒕
𝑨𝒘,

𝟏

𝒕
𝑨𝒆𝒊

= 𝐨𝐥𝐝𝒊 + 𝟏 + 𝟐
𝟏

𝒕
𝑨𝒘,

𝟏

𝒕
𝑨𝒆𝒊

• So, 𝐧𝐞𝐰𝒊 − 𝐨𝐥𝐝𝒊 ≈ 𝟐
𝟏

𝒕
𝑨𝒘,

𝟏

𝒕
𝑨𝒆𝒊

• This inner product is symmetric, and is “negative enough” with constant prob.

HW13, BJWY20

Adversarial Streaming via Differential Privacy

Thm (proven in the next slide):

Oblivious alg 𝓐 Adversarially robust alg using space ෩𝑶 𝒎 ⋅ 𝐒𝐩𝐚𝐜𝐞 𝓐

• The idea is to protect the internal randomness of the algorithm using differential privacy

• This limits (in a precise way) the dependency between the internal randomness of the algorithm and the
choices of the adversary

• Notice that differential privacy is not used here for data privacy. We are not protecting the privacy of the data
items in the stream; only the secrecy of the internal randomness.

Oblivious Alg Adversarially Robust Alg with Space

Oblivious Alg Adversarially Robust Alg with Space

Input: Collection of 𝒌 ≈ 𝒎 random strings 𝑹 = 𝒓𝟏, … , 𝒓𝒌 ∈ 𝟎, 𝟏 ∗ 𝒌

1. Initiate 𝒌 independent instances 𝓐𝟏, … ,𝓐𝒌 of the oblivious algorithm 𝓐 with random strings 𝒓𝟏, … , 𝒓𝒌
2. For 𝒊 = 𝟏, 𝟐,… ,𝒎:

a) Receive next update 𝒖𝒊
b) Insert update 𝒖𝒊 into each of 𝓐𝟏, … ,𝓐𝒌 and obtain answers 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

c) Output 𝒛𝒊 = 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐌𝐞𝐝𝐢𝐚𝐧 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

Oblivious Alg Adversarially Robust Alg with Space

Input: Collection of 𝒌 ≈ 𝒎 random strings 𝑹 = 𝒓𝟏, … , 𝒓𝒌 ∈ 𝟎, 𝟏 ∗ 𝒌

1. Initiate 𝒌 independent instances 𝓐𝟏, … ,𝓐𝒌 of the oblivious algorithm 𝓐 with random strings 𝒓𝟏, … , 𝒓𝒌
2. For 𝒊 = 𝟏, 𝟐,… ,𝒎:

a) Receive next update 𝒖𝒊
b) Insert update 𝒖𝒊 into each of 𝓐𝟏, … ,𝓐𝒌 and obtain answers 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

c) Output 𝒛𝒊 = 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐌𝐞𝐝𝐢𝐚𝐧 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

Analysis idea:

• 𝓑 is differentially private w.r.t. the collection of strings 𝑹

• 𝟏

Oblivious Alg Adversarially Robust Alg with Space

Input: Collection of 𝒌 ≈ 𝒎 random strings 𝑹 = 𝒓𝟏, … , 𝒓𝒌 ∈ 𝟎, 𝟏 ∗ 𝒌

1. Initiate 𝒌 independent instances 𝓐𝟏, … ,𝓐𝒌 of the oblivious algorithm 𝓐 with random strings 𝒓𝟏, … , 𝒓𝒌
2. For 𝒊 = 𝟏, 𝟐,… ,𝒎:

a) Receive next update 𝒖𝒊
b) Insert update 𝒖𝒊 into each of 𝓐𝟏, … ,𝓐𝒌 and obtain answers 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

c) Output 𝒛𝒊 = 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐌𝐞𝐝𝐢𝐚𝐧 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

Analysis idea:

• 𝓑 is differentially private w.r.t. the collection of strings 𝑹

• Fix 𝒊 ∈ 𝒎 and let 𝒖𝒊 = 𝒖𝟏, … , 𝒖𝒊 denote the first 𝒊 updates

• Let 𝓐 𝒓,𝒖𝒊 denote the output of 𝓐 after the 𝒊th update when it is executed with randomness 𝒓 on stream 𝒖𝒊

• 𝟏

Oblivious Alg Adversarially Robust Alg with Space

Input: Collection of 𝒌 ≈ 𝒎 random strings 𝑹 = 𝒓𝟏, … , 𝒓𝒌 ∈ 𝟎, 𝟏 ∗ 𝒌

1. Initiate 𝒌 independent instances 𝓐𝟏, … ,𝓐𝒌 of the oblivious algorithm 𝓐 with random strings 𝒓𝟏, … , 𝒓𝒌
2. For 𝒊 = 𝟏, 𝟐,… ,𝒎:

a) Receive next update 𝒖𝒊
b) Insert update 𝒖𝒊 into each of 𝓐𝟏, … ,𝓐𝒌 and obtain answers 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

c) Output 𝒛𝒊 = 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐌𝐞𝐝𝐢𝐚𝐧 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

Analysis idea:

• 𝓑 is differentially private w.r.t. the collection of strings 𝑹

• Fix 𝒊 ∈ 𝒎 and let 𝒖𝒊 = 𝒖𝟏, … , 𝒖𝒊 denote the first 𝒊 updates

• Let 𝓐 𝒓,𝒖𝒊 denote the output of 𝓐 after the 𝒊th update when it is executed with randomness 𝒓 on stream 𝒖𝒊

• Consider the function 𝒇𝒖𝒊 𝒓 = 𝟙 𝓐 𝒓, 𝒖𝒊 ∈ 𝟏 ± 𝜶 ⋅ 𝒈 𝒖𝒊

• 𝟏

Oblivious Alg Adversarially Robust Alg with Space

Input: Collection of 𝒌 ≈ 𝒎 random strings 𝑹 = 𝒓𝟏, … , 𝒓𝒌 ∈ 𝟎, 𝟏 ∗ 𝒌

1. Initiate 𝒌 independent instances 𝓐𝟏, … ,𝓐𝒌 of the oblivious algorithm 𝓐 with random strings 𝒓𝟏, … , 𝒓𝒌
2. For 𝒊 = 𝟏, 𝟐,… ,𝒎:

a) Receive next update 𝒖𝒊
b) Insert update 𝒖𝒊 into each of 𝓐𝟏, … ,𝓐𝒌 and obtain answers 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

c) Output 𝒛𝒊 = 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐌𝐞𝐝𝐢𝐚𝐧 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

Analysis idea:

• 𝓑 is differentially private w.r.t. the collection of strings 𝑹

• Fix 𝒊 ∈ 𝒎 and let 𝒖𝒊 = 𝒖𝟏, … , 𝒖𝒊 denote the first 𝒊 updates

• Let 𝓐 𝒓,𝒖𝒊 denote the output of 𝓐 after the 𝒊th update when it is executed with randomness 𝒓 on stream 𝒖𝒊

• Consider the function 𝒇𝒖𝒊 𝒓 = 𝟙 𝓐 𝒓, 𝒖𝒊 ∈ 𝟏 ± 𝜶 ⋅ 𝒈 𝒖𝒊

• Observe that 𝒖𝒊 is the result of a private computation on 𝑹 (post-processing 𝓑’s answers), and hence, so is 𝒇𝒖𝒊
• 𝟏

Oblivious Alg Adversarially Robust Alg with Space

Input: Collection of 𝒌 ≈ 𝒎 random strings 𝑹 = 𝒓𝟏, … , 𝒓𝒌 ∈ 𝟎, 𝟏 ∗ 𝒌

1. Initiate 𝒌 independent instances 𝓐𝟏, … ,𝓐𝒌 of the oblivious algorithm 𝓐 with random strings 𝒓𝟏, … , 𝒓𝒌
2. For 𝒊 = 𝟏, 𝟐,… ,𝒎:

a) Receive next update 𝒖𝒊
b) Insert update 𝒖𝒊 into each of 𝓐𝟏, … ,𝓐𝒌 and obtain answers 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

c) Output 𝒛𝒊 = 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐌𝐞𝐝𝐢𝐚𝐧 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

Analysis idea:

• 𝓑 is differentially private w.r.t. the collection of strings 𝑹

• Fix 𝒊 ∈ 𝒎 and let 𝒖𝒊 = 𝒖𝟏, … , 𝒖𝒊 denote the first 𝒊 updates

• Let 𝓐 𝒓,𝒖𝒊 denote the output of 𝓐 after the 𝒊th update when it is executed with randomness 𝒓 on stream 𝒖𝒊

• Consider the function 𝒇𝒖𝒊 𝒓 = 𝟙 𝓐 𝒓, 𝒖𝒊 ∈ 𝟏 ± 𝜶 ⋅ 𝒈 𝒖𝒊

• Observe that 𝒖𝒊 is the result of a private computation on 𝑹 (post-processing 𝓑’s answers), and hence, so is 𝒇𝒖𝒊

• By the generalization properties of DP we have
𝟏

𝒌
⋅ σ𝒋=𝟏

𝒌 𝟙 𝒚𝒊,𝒋 is accurate ≈
𝟏

𝒌
⋅ σ𝒋=𝟏

𝒌 𝒇𝒖𝒊 𝒓𝒋 ≈ 𝔼𝒓 𝒇𝒖𝒊 𝒓 ≈ 𝟏

Oblivious Alg Adversarially Robust Alg with Space

Input: Collection of 𝒌 ≈ 𝒎 random strings 𝑹 = 𝒓𝟏, … , 𝒓𝒌 ∈ 𝟎, 𝟏 ∗ 𝒌

1. Initiate 𝒌 independent instances 𝓐𝟏, … ,𝓐𝒌 of the oblivious algorithm 𝓐 with random strings 𝒓𝟏, … , 𝒓𝒌
2. For 𝒊 = 𝟏, 𝟐,… ,𝒎:

a) Receive next update 𝒖𝒊
b) Insert update 𝒖𝒊 into each of 𝓐𝟏, … ,𝓐𝒌 and obtain answers 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

c) Output 𝒛𝒊 = 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐌𝐞𝐝𝐢𝐚𝐧 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

Analysis idea:

• 𝓑 is differentially private w.r.t. the collection of strings 𝑹

• Fix 𝒊 ∈ 𝒎 and let 𝒖𝒊 = 𝒖𝟏, … , 𝒖𝒊 denote the first 𝒊 updates

• Let 𝓐 𝒓,𝒖𝒊 denote the output of 𝓐 after the 𝒊th update when it is executed with randomness 𝒓 on stream 𝒖𝒊

• Consider the function 𝒇𝒖𝒊 𝒓 = 𝟙 𝓐 𝒓, 𝒖𝒊 ∈ 𝟏 ± 𝜶 ⋅ 𝒈 𝒖𝒊

• Observe that 𝒖𝒊 is the result of a private computation on 𝑹 (post-processing 𝓑’s answers), and hence, so is 𝒇𝒖𝒊

• By the generalization properties of DP we have
𝟏

𝒌
⋅ σ𝒋=𝟏

𝒌 𝟙 𝒚𝒊,𝒋 is accurate ≈
𝟏

𝒌
⋅ σ𝒋=𝟏

𝒌 𝒇𝒖𝒊 𝒓𝒋 ≈ 𝔼𝒓 𝒇𝒖𝒊 𝒓 ≈ 𝟏

Oblivious Alg Adversarially Robust Alg with Space

Input: Collection of 𝒌 ≈ 𝒎 random strings 𝑹 = 𝒓𝟏, … , 𝒓𝒌 ∈ 𝟎, 𝟏 ∗ 𝒌

1. Initiate 𝒌 independent instances 𝓐𝟏, … ,𝓐𝒌 of the oblivious algorithm 𝓐 with random strings 𝒓𝟏, … , 𝒓𝒌
2. For 𝒊 = 𝟏, 𝟐,… ,𝒎:

a) Receive next update 𝒖𝒊
b) Insert update 𝒖𝒊 into each of 𝓐𝟏, … ,𝓐𝒌 and obtain answers 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

c) Output 𝒛𝒊 = 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐌𝐞𝐝𝐢𝐚𝐧 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

Analysis idea:

• 𝓑 is differentially private w.r.t. the collection of strings 𝑹

• Fix 𝒊 ∈ 𝒎 and let 𝒖𝒊 = 𝒖𝟏, … , 𝒖𝒊 denote the first 𝒊 updates

• Let 𝓐 𝒓,𝒖𝒊 denote the output of 𝓐 after the 𝒊th update when it is executed with randomness 𝒓 on stream 𝒖𝒊

• Consider the function 𝒇𝒖𝒊 𝒓 = 𝟙 𝓐 𝒓, 𝒖𝒊 ∈ 𝟏 ± 𝜶 ⋅ 𝒈 𝒖𝒊

• Observe that 𝒖𝒊 is the result of a private computation on 𝑹 (post-processing 𝓑’s answers), and hence, so is 𝒇𝒖𝒊

• By the generalization properties of DP we have
𝟏

𝒌
⋅ σ𝒋=𝟏

𝒌 𝟙 𝒚𝒊,𝒋 is accurate ≈
𝟏

𝒌
⋅ σ𝒋=𝟏

𝒌 𝒇𝒖𝒊 𝒓𝒋 ≈ 𝔼𝒓 𝒇𝒖𝒊 𝒓 ≈ 𝟏

Oblivious Alg Adversarially Robust Alg with Space

Input: Collection of 𝒌 ≈ 𝒎 random strings 𝑹 = 𝒓𝟏, … , 𝒓𝒌 ∈ 𝟎, 𝟏 ∗ 𝒌

1. Initiate 𝒌 independent instances 𝓐𝟏, … ,𝓐𝒌 of the oblivious algorithm 𝓐 with random strings 𝒓𝟏, … , 𝒓𝒌
2. For 𝒊 = 𝟏, 𝟐,… ,𝒎:

a) Receive next update 𝒖𝒊
b) Insert update 𝒖𝒊 into each of 𝓐𝟏, … ,𝓐𝒌 and obtain answers 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

c) Output 𝒛𝒊 = 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐌𝐞𝐝𝐢𝐚𝐧 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

Analysis idea:

• 𝓑 is differentially private w.r.t. the collection of strings 𝑹

• Fix 𝒊 ∈ 𝒎 and let 𝒖𝒊 = 𝒖𝟏, … , 𝒖𝒊 denote the first 𝒊 updates

• Let 𝓐 𝒓,𝒖𝒊 denote the output of 𝓐 after the 𝒊th update when it is executed with randomness 𝒓 on stream 𝒖𝒊

• Consider the function 𝒇𝒖𝒊 𝒓 = 𝟙 𝓐 𝒓, 𝒖𝒊 ∈ 𝟏 ± 𝜶 ⋅ 𝒈 𝒖𝒊

• Observe that 𝒖𝒊 is the result of a private computation on 𝑹 (post-processing 𝓑’s answers), and hence, so is 𝒇𝒖𝒊

• By the generalization properties of DP we have
𝟏

𝒌
⋅ σ𝒋=𝟏

𝒌 𝟙 𝒚𝒊,𝒋 is accurate ≈
𝟏

𝒌
⋅ σ𝒋=𝟏

𝒌 𝒇𝒖𝒊 𝒓𝒋 ≈ 𝔼𝒓 𝒇𝒖𝒊 𝒓 ≈ 𝟏

• So, most of the 𝒚𝒊,𝒋’s are accurate, and hence, any approximate median is also accurate

Oblivious Alg Adversarially Robust Alg with Space

Input: Collection of 𝒌 ≈ 𝒎 random strings 𝑹 = 𝒓𝟏, … , 𝒓𝒌 ∈ 𝟎, 𝟏 ∗ 𝒌

1. Initiate 𝒌 independent instances 𝓐𝟏, … ,𝓐𝒌 of the oblivious algorithm 𝓐 with random strings 𝒓𝟏, … , 𝒓𝒌
2. For 𝒊 = 𝟏, 𝟐,… ,𝒎:

a) Receive next update 𝒖𝒊
b) Insert update 𝒖𝒊 into each of 𝓐𝟏, … ,𝓐𝒌 and obtain answers 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

c) Output 𝒛𝒊 = 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐌𝐞𝐝𝐢𝐚𝐧 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

Analysis idea:

• 𝓑 is differentially private w.r.t. the collection of strings 𝑹

• Fix 𝒊 ∈ 𝒎 and let 𝒖𝒊 = 𝒖𝟏, … , 𝒖𝒊 denote the first 𝒊 updates

• Let 𝓐 𝒓,𝒖𝒊 denote the output of 𝓐 after the 𝒊th update when it is executed with randomness 𝒓 on stream 𝒖𝒊

• Consider the function 𝒇𝒖𝒊 𝒓 = 𝟙 𝓐 𝒓, 𝒖𝒊 ∈ 𝟏 ± 𝜶 ⋅ 𝒈 𝒖𝒊

• Observe that 𝒖𝒊 is the result of a private computation on 𝑹 (post-processing 𝓑’s answers), and hence, so is 𝒇𝒖𝒊

• By the generalization properties of DP we have
𝟏

𝒌
⋅ σ𝒋=𝟏

𝒌 𝟙 𝒚𝒊,𝒋 is accurate ≈
𝟏

𝒌
⋅ σ𝒋=𝟏

𝒌 𝒇𝒖𝒊 𝒓𝒋 ≈ 𝔼𝒓 𝒇𝒖𝒊 𝒓 ≈ 𝟏

• So, most of the 𝒚𝒊,𝒋’s are accurate, and hence, any approximate median is also accurate

𝟏 + 𝜶 ⋅ 𝒈 𝒖𝒊𝟏 − 𝜶 ⋅ 𝒈 𝒖𝒊

Oblivious Alg Adversarially Robust Alg with Space

Input: Collection of 𝒌 ≈ 𝒎 random strings 𝑹 = 𝒓𝟏, … , 𝒓𝒌 ∈ 𝟎, 𝟏 ∗ 𝒌

1. Initiate 𝒌 independent instances 𝓐𝟏, … ,𝓐𝒌 of the oblivious algorithm 𝓐 with random strings 𝒓𝟏, … , 𝒓𝒌
2. For 𝒊 = 𝟏, 𝟐,… ,𝒎:

a) Receive next update 𝒖𝒊
b) Insert update 𝒖𝒊 into each of 𝓐𝟏, … ,𝓐𝒌 and obtain answers 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

c) Output 𝒛𝒊 = 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐌𝐞𝐝𝐢𝐚𝐧 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

Analysis idea:

• 𝓑 is differentially private w.r.t. the collection of strings 𝑹

• Fix 𝒊 ∈ 𝒎 and let 𝒖𝒊 = 𝒖𝟏, … , 𝒖𝒊 denote the first 𝒊 updates

• Let 𝓐 𝒓,𝒖𝒊 denote the output of 𝓐 after the 𝒊th update when it is executed with randomness 𝒓 on stream 𝒖𝒊

• Consider the function 𝒇𝒖𝒊 𝒓 = 𝟙 𝓐 𝒓, 𝒖𝒊 ∈ 𝟏 ± 𝜶 ⋅ 𝒈 𝒖𝒊

• Observe that 𝒖𝒊 is the result of a private computation on 𝑹 (post-processing 𝓑’s answers), and hence, so is 𝒇𝒖𝒊

• By the generalization properties of DP we have
𝟏

𝒌
⋅ σ𝒋=𝟏

𝒌 𝟙 𝒚𝒊,𝒋 is accurate ≈
𝟏

𝒌
⋅ σ𝒋=𝟏

𝒌 𝒇𝒖𝒊 𝒓𝒋 ≈ 𝔼𝒓 𝒇𝒖𝒊 𝒓 ≈ 𝟏

• So, most of the 𝒚𝒊,𝒋’s are accurate, and hence, any approximate median is also accurate

𝟏 + 𝜶 ⋅ 𝒈 𝒖𝒊𝟏 − 𝜶 ⋅ 𝒈 𝒖𝒊

These ideas can be formalized to show the following theorem:

Let 𝓐 be an oblivious alg for 𝒈. There is an adversarially robust alg 𝓑 for 𝒈 using space ෩𝑶 𝒎 ⋅ 𝐒𝐩𝐚𝐜𝐞 𝓐

Oblivious Alg Adversarially Robust Alg with Space

Input: Collection of 𝒌 ≈ 𝒎 random strings 𝑹 = 𝒓𝟏, … , 𝒓𝒌 ∈ 𝟎, 𝟏 ∗ 𝒌

1. Initiate 𝒌 independent instances 𝓐𝟏, … ,𝓐𝒌 of the oblivious algorithm 𝓐 with random strings 𝒓𝟏, … , 𝒓𝒌
2. For 𝒊 = 𝟏, 𝟐,… ,𝒎:

a) Receive next update 𝒖𝒊
b) Insert update 𝒖𝒊 into each of 𝓐𝟏, … ,𝓐𝒌 and obtain answers 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

c) Output 𝒛𝒊 = 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐌𝐞𝐝𝐢𝐚𝐧 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

Analysis idea:

• 𝓑 is differentially private w.r.t. the collection of strings 𝑹

• Fix 𝒊 ∈ 𝒎 and let 𝒖𝒊 = 𝒖𝟏, … , 𝒖𝒊 denote the first 𝒊 updates

• Let 𝓐 𝒓,𝒖𝒊 denote the output of 𝓐 after the 𝒊th update when it is executed with randomness 𝒓 on stream 𝒖𝒊

• Consider the function 𝒇𝒖𝒊 𝒓 = 𝟙 𝓐 𝒓, 𝒖𝒊 ∈ 𝟏 ± 𝜶 ⋅ 𝒈 𝒖𝒊

• Observe that 𝒖𝒊 is the result of a private computation on 𝑹 (post-processing 𝓑’s answers), and hence, so is 𝒇𝒖𝒊

• By the generalization properties of DP we have
𝟏

𝒌
⋅ σ𝒋=𝟏

𝒌 𝟙 𝒚𝒊,𝒋 is accurate ≈
𝟏

𝒌
⋅ σ𝒋=𝟏

𝒌 𝒇𝒖𝒊 𝒓𝒋 ≈ 𝔼𝒓 𝒇𝒖𝒊 𝒓 ≈ 𝟏

• So, most of the 𝒚𝒊,𝒋’s are accurate, and hence, any approximate median is also accurate

𝟏 + 𝜶 ⋅ 𝒈 𝒖𝒊𝟏 − 𝜶 ⋅ 𝒈 𝒖𝒊

These ideas can be formalized to show the following theorem:

Let 𝓐 be an oblivious alg for 𝒈. There is an adversarially robust alg 𝓑 for 𝒈 using space ෩𝑶 𝒎 ⋅ 𝐒𝐩𝐚𝐜𝐞 𝓐

Main Takeaway:

• Differential privacy can be used to “hide” the internal randomness of the streaming algorithm from the
adversary

• Intuitively, this brings us back to the oblivious setting, where guaranteeing accuracy is significantly easier

Another application:

Dynamic algorithms with adaptive adversaries

• Similar to adversarial streaming, except that the focus is on runtime instead of space

Another application:

Dynamic algorithms with adaptive adversaries

• Similar to adversarial streaming, except that the focus is on runtime instead of space

• Example: Consider a dynamic graph problem where on every time step:
• The current input specify one edge modification to the graph (either add or remove an

edge)
• We process this input and output a modified approximation for the size of the global

min-cut in the graph

Another application:

Dynamic algorithms with adaptive adversaries

• Similar to adversarial streaming, except that the focus is on runtime instead of space

• Example: Consider a dynamic graph problem where on every time step:
• The current input specify one edge modification to the graph (either add or remove an

edge)
• We process this input and output a modified approximation for the size of the global

min-cut in the graph

• The hope is that since only one edge was changed, then we won’t need to re-compute the
size of the global min-cut from scratch. The focus in this line of works is on designing
algorithms with fast response time

• Using DP to protect the internal randomness currently results in the fastest algorithms for
the adaptive setting

• Strong connection between ability of adaptive computations to remain
faithful, and the amount of information that they leak

• Differential privacy plays a key role in the state of the art methods

Conclusion
Main Takeaways:

Differential privacy without a central database
Boston Differential Privacy Summer School, 6-10 June 2022

Uri StemmerAbout this course

1) The local model
• What is the model?
• Computing histograms
• Computing averages
• Clustering
• LDP vs. statistical queries
• Impossibility result for histograms
• Interactive LDP protocols

2) The shuffle model
• Secure Multiparty Computation (MPC)
• What is the shuffle model
• Counting bits

• Robustness in the shuffle model
• Negative result for the shuffle model
• Interaction

3) Streaming/online settings
• Private streaming algorithms
• Privacy under continual observation

4) Differential privacy as a tool
• DP is the enemy of overfitting
• Application to answering adaptive

queries
• Application to adaptive streaming

