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About this course

• The local model
• The shuffle model
• Streaming/online settings
• Differential privacy as a tool



Differential privacy as a tool
Today’s Outline

1. DP is the enemy of overfitting

2. Application to answering adaptive queries

3. Application to adaptive streaming
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The Generalization Properties of DP (“anti overfitting”)

Warmup 1:

• Let 𝕯 be a distribution over a domain 𝑿, and fix a predicate 𝒉:𝑿 → 𝟎, 𝟏

• Let 𝑺 ∼ 𝕯𝒏. Then by the Hoeffding bound, w.h.p. we have   
𝟏

𝑺
⋅ σ𝒙∈𝑺𝒉 𝒙 ≈ 𝔼𝒙∼𝕯 𝒉 𝒙
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Warmup 2:

• Let 𝕯 be a distribution over a domain 𝑿

• Let 𝓐:𝑿𝒏 → 𝟐𝑿 be an algorithm that takes a sample and outputs a predicate

• Let 𝑺 ∼ 𝕯𝒏 and let 𝒉 ← 𝓐 𝑺

• Can we claim that the empirical average is close to the expectation? 

• Not in general. E.g., 𝓐 might choose the function 𝒉 𝒙 = 𝟙 𝒙 ∈ 𝑺
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• Let 𝕯 be an unknown distribution over a domain 𝑿

• Consider a data analyst who wants to learn properties of 𝕯

• The analyst interacts with 𝕯 via statistical queries:

In each step, the analyst specifies a predicate 𝒉:𝑿 → 𝟎, 𝟏 and obtains an estimate for 𝔼𝒙∼𝕯 𝒉 𝒙

Recall: The Statistical Queries Model
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What is the number of samples 𝒏 that 𝓜 needs to ensure this as a function of 𝜶 and the number of queries 𝒌?
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• The challenge is that the analyst can choose its queries adaptively

• We want to provide accuracy w.r.t. 𝕯
• If we are not careful, we could quickly overfit to 𝑺
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Step back: Non adaptive game

𝒉𝟏, 𝒉𝟐, … , 𝒉𝒌

𝒂𝟏, 𝒂𝟐, … , 𝒂𝒌
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Natural solution: Answer every 𝒉𝒊 with its empirical avg 𝒂𝒊 = 𝒉𝒊 𝑺

Hoeffding: w.h.p., 𝒉𝒊 𝑺 ≈ 𝒉𝒊 𝕯 for all 𝒊, provided 𝒏 ≳
𝟏

𝜶𝟐
𝐥𝐨𝐠𝒌

Can answer exponential number of non-adaptive queries!

Notation:     𝒉 𝕯 = 𝔼𝒙∼𝕯 𝒉 𝒙 ,      𝒉 𝑺 =
𝟏

𝒏
σ𝒊=𝟏
𝒏 𝒉 𝒙𝒊



Recall the adaptive model
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𝒉𝟏

𝒂𝟏

𝒉𝒌

𝒂𝒌

⋮

𝒉𝟐

𝒂𝟐

Can we answer with empirical average, i.e., answer every 

𝒉 with 𝒉 𝑺 =
𝟏

𝒏
σ𝒊=𝟏
𝒏 𝒉 𝒙𝒊 ?



• Domain 𝑿 = 𝟏, 𝟐,… , 𝟐𝒏

• Database 𝑺 with 𝒏 iid uniform samples from 𝑿

Goal: After 1 query, find 𝒉 s.t. 𝒉 𝑺 ≫ 𝒉(𝕯)

Negative result for adaptive case:

Answering every 𝒉𝒊 with 𝒉𝒊 𝑺 fails after 1 query
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Recall the adaptive model
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Unknown dist. 𝕯
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𝒉𝟏

𝒂𝟏

𝒉𝒌

𝒂𝒌

⋮

𝒉𝟐

𝒂𝟐

So far: reusing the data and answering with empirical 
average does not work



Natural approach #2: Data splitting
• Divide the data set into 𝒌 chunks of size 𝒏/𝒌 each
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⟹
Theorem [DMNS’06]

There is an efficient private alg. estimating 
the empirical average of ≈ 𝒏𝟐 adaptive 

queries using a database of size 𝒏

Theorem [DFHPRP’15, BNSSSU’16]
There is an efficient alg. answering 
≈ 𝒏𝟐 adaptive queries on the 

distribution using 𝒏 iid samples



Differential privacy as a tool
Today’s Outline

1. DP is the enemy of overfitting

2. Application to answering adaptive queries

3. Application to adaptive streaming



Classical vs. Adaptive streaming

• Randomized algorithms are often analyzed under the assumption that their internal 
randomness is independent of their inputs

• This is a reasonable assumption for offline algorithms, which get all their inputs at once, 
process it, and spit out the results

• However, in interactive settings, this assumption is not always reasonable: future 
inputs may depend on previous outputs, and hence, depend on the internal 
randomness of the algorithm

Takeaway: We want to design algorithms providing provable guarantees even for adaptive inputs
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Consider a streaming algorithm that continuously estimates the value of the desired function

(The goal is to minimize space requirements)
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The Adversarial Streaming Model HW13, BJWY20

• Fix a function 𝒈 mapping a (prefix of the) stream to a real number, and an approximation parameter 𝜶
‒ E.g., 𝒈 might count the number of distinct elements in the stream

• Two-player game between a (randomized) StreamingAlgorithm and an Adversary

• In the 𝒊th round:
1. The Adversary chooses an update 𝒖𝒊 for the stream, which can depend on all previous stream 

updates and outputs of StreamingAlgorithm

2. The StreamingAlgorithm processes the new update and outputs its current response 𝒛𝒊

• The goal of the Adversary is to make the StreamingAlgorithm output an incorrect response 𝒛𝒊 at some point 𝒊
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• Deterministic streaming algorithms are adversarially robust
- However, many streaming algorithms provably must be randomized [AMS ’96]

• Many of the randomized streaming algorithms are not adversarially robust

• Fix a function 𝒈 mapping a (prefix of the) stream to a real number, and an approximation parameter 𝜶
‒ E.g., 𝒈 might count the number of distinct elements in the stream

• Two-player game between a (randomized) StreamingAlgorithm and an Adversary

• In the 𝒊th round:
1. The Adversary chooses an update 𝒖𝒊 for the stream, which can depend on all previous stream 

updates and outputs of StreamingAlgorithm

2. The StreamingAlgorithm processes the new update and outputs its current response 𝒛𝒊

• The goal of the Adversary is to make the StreamingAlgorithm output an incorrect response 𝒛𝒊 at some point 𝒊

Informal takeaway: The difficulty with adversarial streaming is that as time goes by the adversary might 
learn information about the internal randomness of the algorithm

Do oblivious streaming algorithms work in the adversarial model?
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𝟏

𝒕
⋅ 𝒚 𝟐

𝟐
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𝔼 𝒂ℓ ⋅ 𝒇
𝟐 = 𝔼 ෍

𝒋∈ 𝒏

𝒂ℓ,𝒋 ⋅ 𝒇𝒋

𝟐
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(pairwise)
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𝒋∈ 𝒏

𝒇𝒋
𝟐 = 𝒇 𝟐

𝟐
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⟹ Every 𝒂ℓ ⋅ 𝒇
𝟐 is an unbiased estimator for 𝒇 𝟐

𝟐

• Averaging over 𝒕 reduces variance and improves estimation

Analysis:
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Adversary for the AMS Sketch
Recall AMS sketch

• Random matrix 𝑨 ∈ ±𝟏 𝒕×𝒏

• After the 𝒊th update, respond with 
𝟏

𝒕
𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐
=

𝟏

𝒕
𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐

where 𝒇 𝒊 = 𝚫𝟏 ⋅ 𝒖𝟏 +⋯+ 𝚫𝒊 ⋅ 𝒖𝒊
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𝟏

𝒕
𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐
=

𝟏

𝒕
𝑨 ⋅ 𝒇 𝒊

𝟐

𝟐

where 𝒇 𝒊 = 𝚫𝟏 ⋅ 𝒖𝟏 +⋯+ 𝚫𝒊 ⋅ 𝒖𝒊

The attack

• Set 𝒘 ← 𝑪 ⋅ 𝒕 ⋅ 𝒆𝟏

• For  𝒊 = 𝟐, 𝟑, … ,𝒎 = 𝑶 𝒕 do 

1. 𝐨𝐥𝐝 ←
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

2. 𝒘 ← 𝒘+ 𝒆𝒊

3. 𝐧𝐞𝐰 ←
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

4. If  𝐧𝐞𝐰 > 𝐨𝐥𝐝 then  𝒘 ← 𝒘− 𝒆𝒊
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Analysis

• At all times 𝒘 𝟐
𝟐 ≥ 𝑪𝟐 ⋅ 𝒕 by init

⟹ Suffices to show that 
𝟏

𝒕
𝑨 ⋅ 𝒘

𝟐

𝟐

drops below 𝑪𝟐/𝟐 ⋅ 𝒕
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𝟐

𝟐

=
𝟏
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𝑨 ⋅ 𝒘
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𝟐

+
𝟏

𝒕
𝑨 ⋅ 𝒆𝒊

𝟐

𝟐

+ 𝟐
𝟏

𝒕
𝑨𝒘,

𝟏

𝒕
𝑨𝒆𝒊

= 𝐨𝐥𝐝𝒊 + 𝟏 + 𝟐
𝟏

𝒕
𝑨𝒘,

𝟏

𝒕
𝑨𝒆𝒊
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𝟐

𝟐

drops below 𝑪𝟐/𝟐 ⋅ 𝒕

• 𝐧𝐞𝐰𝒊 =
𝟏

𝒕
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𝟐
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𝟐

+ 𝟐
𝟏

𝒕
𝑨𝒘,

𝟏

𝒕
𝑨𝒆𝒊

= 𝐨𝐥𝐝𝒊 + 𝟏 + 𝟐
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• So,    𝐧𝐞𝐰𝒊 − 𝐨𝐥𝐝𝒊 ≈ 𝟐
𝟏

𝒕
𝑨𝒘,

𝟏

𝒕
𝑨𝒆𝒊

• This inner product is symmetric, and is “negative enough” with constant prob.
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Adversarial Streaming via Differential Privacy

Thm (proven in the next slide):

Oblivious alg 𝓐 Adversarially robust alg using space ෩𝑶 𝒎 ⋅ 𝐒𝐩𝐚𝐜𝐞 𝓐

• The idea is to protect the internal randomness of the algorithm using differential privacy

• This limits (in a precise way) the dependency between the internal randomness of the algorithm and the 
choices of the adversary

• Notice that differential privacy is not used here for data privacy. We are not protecting the privacy of the data 
items in the stream; only the secrecy of the internal randomness.



Oblivious Alg Adversarially Robust Alg with Space 



Oblivious Alg Adversarially Robust Alg with Space 

Input: Collection of 𝒌 ≈ 𝒎 random strings 𝑹 = 𝒓𝟏, … , 𝒓𝒌 ∈ 𝟎, 𝟏 ∗ 𝒌

1. Initiate 𝒌 independent instances 𝓐𝟏, … ,𝓐𝒌 of the oblivious algorithm 𝓐 with random strings 𝒓𝟏, … , 𝒓𝒌
2. For 𝒊 = 𝟏, 𝟐,… ,𝒎:

a) Receive next update 𝒖𝒊
b) Insert update 𝒖𝒊 into each of 𝓐𝟏, … ,𝓐𝒌 and obtain answers 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

c) Output 𝒛𝒊 = 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐌𝐞𝐝𝐢𝐚𝐧 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌



Oblivious Alg Adversarially Robust Alg with Space 

Input: Collection of 𝒌 ≈ 𝒎 random strings 𝑹 = 𝒓𝟏, … , 𝒓𝒌 ∈ 𝟎, 𝟏 ∗ 𝒌

1. Initiate 𝒌 independent instances 𝓐𝟏, … ,𝓐𝒌 of the oblivious algorithm 𝓐 with random strings 𝒓𝟏, … , 𝒓𝒌
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b) Insert update 𝒖𝒊 into each of 𝓐𝟏, … ,𝓐𝒌 and obtain answers 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

c) Output 𝒛𝒊 = 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐌𝐞𝐝𝐢𝐚𝐧 𝒚𝒊,𝟏, … , 𝒚𝒊,𝒌

Analysis idea:

• 𝓑 is differentially private w.r.t. the collection of strings 𝑹

• 𝟏
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Analysis idea:

• 𝓑 is differentially private w.r.t. the collection of strings 𝑹

• Fix 𝒊 ∈ 𝒎 and let 𝒖𝒊 = 𝒖𝟏, … , 𝒖𝒊 denote the first 𝒊 updates
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Main Takeaway:

• Differential privacy can be used to “hide” the internal randomness of the streaming algorithm from the 
adversary

• Intuitively, this brings us back to the oblivious setting, where guaranteeing accuracy is significantly easier
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Another application: 

Dynamic algorithms with adaptive adversaries

• Similar to adversarial streaming, except that the focus is on runtime instead of space

• Example: Consider a dynamic graph problem where on every time step:
• The current input specify one edge modification to the graph (either add or remove an 

edge)
• We process this input and output a modified approximation for the size of the global 

min-cut in the graph

• The hope is that since only one edge was changed, then we won’t need to re-compute the 
size of the global min-cut from scratch. The focus in this line of works is on designing 
algorithms with fast response time

• Using DP to protect the internal randomness currently results in the fastest algorithms for 
the adaptive setting



• Strong connection between ability of adaptive computations to remain 
faithful, and the amount of information that they leak

• Differential privacy plays a key role in the state of the art methods

Conclusion
Main Takeaways:
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1) The local model
• What is the model?
• Computing histograms
• Computing averages
• Clustering
• LDP vs. statistical queries
• Impossibility result for histograms
• Interactive LDP protocols

2) The shuffle model
• Secure Multiparty Computation (MPC)
• What is the shuffle model
• Counting bits

• Robustness in the shuffle model
• Negative result for the shuffle model
• Interaction

3) Streaming/online settings
• Private streaming algorithms
• Privacy under continual observation

4) Differential privacy as a tool
• DP is the enemy of overfitting
• Application to answering adaptive 

queries
• Application to adaptive streaming


